Design and Construction of an Off-grid Solar Power Plant to Power the Dragon Fruit Garden Lighting in Yosomulyo Village

Authors

  • Aldy Allan Ghozali Universitas Udayana Author
  • Lie Jasa Universitas Udayana Author
  • I Nyoman Satya Kumara Universitas Udayana Author

DOI:

https://doi.org/10.24843/MITE.205.v24i02.P2

Keywords:

Buah Naga; Off-grid; PLTS; PVSyst.

Abstract

The sunlight intensity level requirement for dragon fruit plants is more than 90%, which is essential for the photosynthesis process and the morphological development of the plant. This plant is classified as long-day plant, meaning that it requires at least 12 hours or more of sunlight to reproduce. Dragon fruit farmers utilize artificial lighting as an alternative to sunlight to support the plant's biological processes at night. The energy source is conventional electricity from grid (PLN). The design of an off-grid PV system at the Yosomulyo dragon fruit farm is carried out to support the farm's daily electricity needs. The design begins with field observations to obtain geographic data of the farm, daily electrical load profile data with amperes, calculating the PV system capacity, determining PV system components, and testing the performance of the design with PVSyst simulation. The simulation results of the PLTS design are 70.9% with an inverter variation of 6500 W, solar modules of 550 Wp, batteries of 200 Ah 12 V at a system voltage of 48 VDC, and an autonomy day of 1.

Downloads

Download data is not yet available.

References

[1] S. Warisono and K. Dahana, “Buku Pintar Bertanam Buah Naga di Kebun, Pekarangan & Dalam Pot”. Jakarta: Gramedia Pustaka Utama, (tanpa tahun).

[2] I.D. Susanto and M. Rondhi,. “Journal of Communication and Agricultural Extension The Effect of Light”, (2020).

[3] H.Firdaus, Indriani, Selamet, and N. R. C. T. Wahyudi. “Powering Dragon Fruit Sukses Berkebun Buah Naga Dengan Teknik Penyinaran Listrik,” Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri, (2019).

[4] Rosidin and T. M. V. Arief, “Cerita di Balik Sinar Terang Lampu Kebun Buah Naga”, (2021).

[5] C. I. Ferdianti and Sudarti, “Evektifitas Penyinaran Untuk Peningkatan Produksi Buah Naga Lighting Effectiveness to Increase Dragon Fruits Production”. J. Agrifarm Vol. 10(2), (2021).

[6] Kementerian ESDM. “Kejar NZE, Pemerintah Terus Mendorong Pemanfaatan EBT di Indonesia”, available : https://www.esdm.go.id/id/berita-unit/direktorat-jenderal-ketenagalistrikan/kejar-nze-pemerintah-terus-mendorong-pemanfaatan-ebt-di-indonesia ,(2022), diakses 20 Juli 2025.

[7] K. Sumariana, I. N. S. Kumara, and W. G. Ariastina, “Desain dan Analisa Ekonomi PLTS Atap untuk Villa di Bali,” Maj. Ilm. Teknol. Elektro,vol. 18, no. 3, p. 337, 2019, doi: 10.24843/mite.2019.v18i03.p06.

[8] G. Riawan, I. N. S. Kumara, and W. G. Ariastina, “Analisis Performansi dan Ekonomi PLTS Atap 10 kWp pada Bangunan Rumah Tangga di Desa Batuan Gianyar,” Maj. Ilm. Teknol. Elektro, vol. 21, no. 1, p. 63, 2022, doi: 10.24843/mite.2022.v21i01.p09.

[9] A.S. Murti, I. N. S. Kumara, and W.G. Ariastina, “Analisis Investasi PLTS 8 kWp On-Grid Pada Bangunan Apartemen Pariwisata di Bali”, Maj. Ilm. Teknol. Elektro, vol. 23, no. 2, p. 223, 2022, doi: https://doi.org/10.24843/MITE.2024.v23i02.P05 .

[10] S. Junior, I. N. S. Kumara, and I. A. D. Giriantari, “Perkembangan Pemanfaatan PLTS di DKI Jakarta Menuju Target 13,8 MW Tahun 2025”. Jurnal SPEKTRUM Vol. 9(1), (2022).

[11] K. A. Setiawan, I. N. S.Kumara, and I. W. Sukerayasa, “Analisis Unjuk Kerja Pembangkit Listrik Tenaga Surya (PLTS) Satu Mwp Terinterkoneksi Jaringan Di Kayubihi, Bangli”. Majalah Ilmiah Teknologi Elektro Vol. 13(1), (2014).

[12] J. O. Ken, I. N. Setiawan, and Kumara, I N. S, “Desain PLTS Off-Grid Berdasarkan Analisis Otonomi Baterai Lead Acid Opzv Di Adidaya Workshop, Jakarta Barat. Jurnal SPEKTRUM Vol. 10(3), (2023).

[13] P. Mohanty, K. R. Sharma, Dkk, “PV System Design for Off-Grid Applications PV System Design for Off-Grid Applications”, (2015).

[14] Chauhan and R.P. Saini, “A review on integrated renewable energy system based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control”. Renewable and Sustainable Energy Reviews, 38, 99–120, (2014).

[15] Battery University, “How to Measure State-of-Charge”. Retrieved from https://batteryuniversity.com (2023), diakses 31 Juli 2025.

[16] M. A. A. Akbar, A. M. S. Yunus, and J. Tanko, PVSYST-Based Solar Power Plant Planning. INTEK Jurnal Penelitian Vol.9(2), (2022).

[17] R. Fahrizal, Erlina, and H. Suyanto, “Perencanaan PLTS Off Grid Dengan Daya Output 17,694 Kwh Pada Usaha Dagang Warung Kopi Yahbit Kupi Banda Aceh”. Diss. Institut Teknologi PLN Vol.9(1), (2021).

[18] V. R. Kossi, “Perencanaan PLTS Terpusat (Off-grid) di Dusun Tikalong Kabupaten Mempawah”. Jurnal Teknik Elektro Universitas Tanjungpura, 2(1), (2018).

[19] K. Liu, K. Li, Q. Peng, and C. Zhang, “A Brief Review On Key Technologies In The Battery Management System Of Electric Vehicles”. Frontiers of Mechanical Engineering, 10(2), 101–106, (2015).

[20] M. Naim, “Rancangan Sistem Kelistrikan PLTS Off-grid 1000 Watt Di Desa Loeha Kecamatan Towuti”. Vertex Elektro, 12(1), pp.17-25, (2020).

[21] H. A. Putro, dkk, “Stabilisasi Penerangan Kebun Buah Naga Berbasis Solar Panel”. Jurnal Teknik Elektro Universitas Negeri Palembang Vol 13(1), (2021).

[22] B. Ramadhani, “Instalasi Pembangkit Listrik Tenaga Surya Dos & Don’ts”. Deutsche Gesellschoft fur Internationale Zusammenarbeit (GIZ) GmbH Energising Develovment (Endev) Indonesia Jakarta, pp.23-28, (2018).

[23] D.T. Laksono, L.A.C.D. Pratama, dkk, “Simulasi dan Perancangan PLTS Off-grid 3kW Menggunakan Software PVsyst”. JTE UNIBA Vol. 9(2) (2025).

Downloads

Published

2025-12-31