Peningkatan Kualitas Sinyal Photoplethysmography (PPG) melalui Pendekatan Prapemrosesan Multitahap

Penulis

  • Fitri Handayani, S.T Universitas Siliwangi Penulis
  • Dr. Ir. Asep Andang, M.T., IPU., ASEAN.Eng Universitas Siliwangi Penulis
  • Ir. Firmansyah M.S.N., S.T., M.Kom., IPM., ASEAN.Eng Universitas Siliwangi Penulis

DOI:

https://doi.org/10.24843/MITE.205.v24i01.P06

Kata Kunci:

Photoplethysmography(PPG); analisis gradien;titik fidusial; deteksi puncak dan lembah; validasi fisiologis.

Abstrak

Photoplethysmography (PPG) adalah teknik non-invasif untuk mengukur berbagai parameter fisiologis, termasuk kadar glukosa darah. Namun, sinyal PPG kerap dipengaruhi derau dan artefak yang menurunkan akurasi analisis dan prediksi. Oleh karena itu, dibutuhkan metode penyaringan derau yang efektif agar sinyal berkualitas dan siap untuk ekstraksi fitur guna estimasi kadar glukosa darah.

Penelitian ini menawarkan solusi terhadap permasalahan derau pada sinyal PPG melalui penerapan metode pra-pemrosesan yang tepat. Penelitian ini bertujuan menyeleksi sinyal PPG berkualitas melalui tiga metode pra-pemrosesan: detrend, smoothing, dan filter bandpass 0,5–5 Hz. Efektivitas ketiga metode dievaluasi melalui uji ADF untuk mengukur stasioneritas sinyal, analisis spektrum frekuensi untuk mengamati distribusi komponen frekuensi, serta pengujian SNR untuk menilai rasio sinyal terhadap derau. Berdasarkan analisis terhadap 67 sampel data, diperoleh hasil p-value < 0,05 yang menunjukkan bahwa sinyal telah mencapai kondisi stasioner. Selain itu, rata-rata statistik uji pria lebih tinggi dibanding wanita, menunjukkan sinyal pria lebih stasioner setelah detrend. Sementara itu, sebanyak 36 sampel (54%) memiliki SNR ≥ 20 dB mengindikasikan bahwa lebih dari setengah data memiliki kualitas yang cukup baik untuk analisis lebih lanjut.

Hasil penelitian menunjukkan bahwa pra-pemrosesan multitahap meningkatkan kualitas sinyal PPG, divalidasi melalui uji kuantitatif terhadap stasioneritas dan nilai SNR. Dengan demikian, sinyal PPG yang telah diproses dan memiliki kualitas yang lebih baik dinilai layak untuk digunakan dalam pengembangan model estimasi berbagai parameter fisiologis, termasuk kadar glukosa darah.

Unduhan

Data unduhan tidak tersedia.

Referensi

[1] T. Y. Abay and P. A. Kyriacou, “Photoplethysmography in oxygenation and blood volume measurements,” Photoplethysmography, pp. 147–188, 2022, doi: 10.1016/b978-0-12-823374-0.00003-7.

[2] S. K. Singha and M. Ahmad, “Noninvasive Heart Rate and Blood Glucose Level Estimation Using Photoplethysmography,” 2021 Int. Conf. Inf. Commun. Technol. Sustain. Dev. ICICT4SD 2021 - Proc., pp. 151–155, 2021, doi: 10.1109/ICICT4SD50815.2021.9396849.

[3] R. Agung and A. Suryawan, “Perancangan Dan Realisasi Penghitung Frekuensi Detak Jantung Berbasis Mikrokontroler AT89S52,” vol. 6, no. 2, pp. 13–19, 2007.

[4] M. Elgendi, “On the Analysis of Photoplethysmogram Signal,” Curr. Cardiol. Rev., vol. 8, no. c, pp. 14–25, 2012.

[5] D. Sutarya, “Sistem Monitoring Kadar Gula Darah, Kolestrol dan Asam Urat secara Non Invasive menggunakan Sensor GY-MAX 30100,” J. JOULE, vol. Vol 1, no. 25–34, pp. 1907–2546, 2021, [Online]. Available: http://journal.univpancasila.ac.id/index.php/joule/

[6] F. B. Reguig, “Photoplethysmogram signal analysis for detecting vital physiological parameters: An evaluating study,” 2016 Int. Symp. Signal, Image, Video Commun. ISIVC 2016, pp. 167–173, 2017, doi: 10.1109/ISIVC.2016.7893981.

[7] E. Susana, K. Ramli, P. D. Purnamasari, and N. H. Apriantoro, “Non-Invasive Classification of Blood Glucose Level Based on Photoplethysmography Using Time–Frequency Analysis,” Inf., vol. 14, no. 3, 2023, doi: 10.3390/info14030145.

[8] A. K. Bhoi and S. Sarkar, “Noise Cancellation of PPG Signals using Wavelet Transformation,” Int. J. Electron. Commun. Comput. Eng., vol. 3, no. 5, pp. 2278–4209, 2012.

[9] P. Madona, “Akuisisi Data Sinyal Photoplethysmograph (PPG) Menggunakan Photodioda,” J. Elektro dan Mesin Terap., vol. 2, no. 2, pp. 32–41, 2016, doi: 10.35143/elementer.v2i2.187.

[10] E. Mejía-Mejía, J. Allen, K. Budidha, C. El-Hajj, P. A. Kyriacou, and P. H. Charlton, Photoplethysmography signal processing and synthesis. 2021. doi: 10.1016/B978-0-12-823374-0.00015-3.

[11] Y. Chen, D. Li, Y. Li, X. Ma, and J. Wei, “Use moving average filter to reduce noises in wearable PPG during continuous monitoring,” Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, vol. 181 LNICST, pp. 193–203, 2017, doi: 10.1007/978-3-319-49655-9_26.

[12] A. Luke, S. Shaji, and K. A. U. Menon, “Motion Artifact Removal and Feature Extraction from PPG Signals Using Efficient Signal Processing Algorithms,” 2018 Int. Conf. Adv. Comput. Commun. Informatics, pp. 624–630, 2018.

[13] A. A. M. A. Istri Iswari, I. M. O. Widyantara, and R. S. Hartati, “Penerapan Wavelet Daubechies pada Teknik Estimasi Gerak Bilateral,” Maj. Ilm. Teknol. Elektro, vol. 21, no. 1, p. 143, 2022, doi: 10.24843/mite.2022.v21i01.p19.

[14] A. P. Study, “An In-Ear PPG-Based Blood Glucose Monitor :,” 2023.

[15] Amalia Yunia Rahmawati, PPG Signal Analysis An Introduction Using MATLAB, no. July. 2021.

[16] S. N. Nampoothiri, R. K. Pathinarupothi, M. V. Ramesh, and K. A. U. Menon, “Comparison of Infrared and Red Photoplethysmography signals for Non-calibrated Non-invasive Blood Glucose Monitoring,” 2020 IEEE Reg. 10 Symp. TENSYMP 2020, no. June, pp. 1568–1571, 2020, doi: 10.1109/TENSYMP50017.2020.9230743.

[17] M. Höll, K. Kiyono, and H. Kantz, “Theoretical foundation of detrending methods for fluctuation analysis such as detrended fluctuation analysis and detrending moving average,” Phys. Rev. E, vol. 99, no. 3, pp. 1–20, 2019, doi: 10.1103/PhysRevE.99.033305.

[18] A. González-López and P. A. Campos-Morcillo, “Efficient detrending of uniform images for accurate determination of the noise power spectrum at low frequencies,” Phys. Med. Biol., vol. 64, no. 10, 2019, doi: 10.1088/1361-6560/ab1a68.

[19] A. Al Havis and L. Fitria, “Filtering Sinyal Menggunakan Band Pass Filter,” J. SIFO Mikroskil, vol. 19, no. 2, pp. 37–48, 2018, doi: 10.55601/jsm.v19i2.594.

[20] Y. V. Pantoja-Pacheco and J. Yáñez-Mendiola, “Method for the Statistical Analysis of the Signals Generated by an Acquisition Card for Pulse Measurement,” Mathematics, vol. 12, no. 6, pp. 1–24, 2024, doi: 10.3390/math12060923.

[21] J. Rumiński, “Reliability of pulse measurements in videoplethysmography,” Metrol. Meas. Syst., vol. 23, no. 3, pp. 359–371, 2016, doi: 10.1515/mms-2016-0040.

[22] J. Park, H. S. Seok, S. S. Kim, and H. Shin, “Photoplethysmogram Analysis and Applications: An Integrative Review,” Front. Physiol., vol. 12, no. March, pp. 1–23, 2022, doi: 10.3389/fphys.2021.808451.

[23] G. Ladeira, N. Marwan, J. B. Destro-Filho, C. Davi Ramos, and G. Lima, “Frequency spectrum recurrence analysis,” Sci. Rep., vol. 10, no. 1, pp. 1–9, 2020, doi: 10.1038/s41598-020-77903-4.

[24] M. S. Ummah, “Ekstraksi Fitur Alat Musik Tradisional Menggunakan Transformasi Kosinus Diskrit,” Sustain., vol. 11, no. 1, pp. 1–14, 2019, [Online]. Available: http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMBETUNGAN_TERPUSAT_STRATEGI_MELESTARI

[25] A. D. Haq, I. Santoso, and Z. A. A. Macrina, “Estimasi Signal To Noise Ratio (SNR) Menggunakan Metode Korelasi,” Transient, vol. 1, no. 4, pp. 1–8, 2012.

[26] B. Mishra and N. S. Nirala, “A Survey on Denoising Techniques of PPG Signal,” 2020 IEEE Int. Conf. Innov. Technol. INOCON 2020, pp. 1–8, 2020, doi: 10.1109/INOCON50539.2020.9298358.

[27] I. A. Majeed, S. Jos, R. Arora, K. Choi, and S. Bae, “Motion Artifact Removal of Photoplethysmogram (PPG) Signal,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 560037, pp. 5576–5580, 2019, doi: 10.1109/EMBC.2019.8857131.

[28] A. S. Karavaev et al., “Low-frequency component of photoplethysmogram reflects the autonomic control of blood pressure,” Biophys. J., vol. 120, no. 13, pp. 2657–2664, 2021, doi: 10.1016/j.bpj.2021.05.020.

[29] M. A. B. Reguig and N. Labdelli, “Blood glucose prediction using non-invasive optical system based on photoplethysmography,” Int. J. Electr. Comput. Eng., vol. 14, no. 5, pp. 5200–5208, 2024, doi: 10.11591/ijece.v14i5.pp5200-5208.

[30] N. I. F. M. Lahil et al., “Non-Invasive Blood Pressure and Heart Rate Sensing Using Photoplethysmogram Sensor,” Proceeding - 2021 IEEE 17th Int. Colloq. Signal Process. Its Appl. CSPA 2021, no. March, pp. 156–160, 2021, doi: 10.1109/CSPA52141.2021.9377302.

Diterbitkan

2025-08-11