Deteksi Adaptif Titik Kunci Sinyal Photoplethysmography (PPG) dengan Pemodelan Gradien untuk Identifikasi Pola Fisiologis
DOI:
https://doi.org/10.24843/MITE.205.v24i01.P05Kata Kunci:
Photoplethysmography (PPG), Analisis gradien, Titik fidusial, Deteksi puncak dan lembah, Validasi fisiologisAbstrak
Intisari— Photoplethysmography (PPG) adalah teknik optik non-invasif yang digunakan untuk pemantauan kesehatan kardiovaskular, seperti estimasi tekanan darah dan analisis kekakuan arteri. Namun, deteksi titik fidusial pada sinyal PPG, seperti onset, puncak sistolik, takik dikrotik, dan puncak diastolik, sering terhambat oleh noise, baseline wander, dan variabilitas fisiologis. Meskipun berbagai metode telah diusulkan, seperti analisis domain waktu-frekuensi dan algoritma pembelajaran mesin, metode tersebut masih memiliki keterbatasan, seperti kompleksitas komputasi yang tinggi dan kerentanan terhadap noise.
Penelitian ini mengusulkan pendekatan berbasis analisis perubahan gradien untuk meningkatkan akurasi deteksi titik fidusial pada sinyal PPG. Dengan menggabungkan modul validasi dan koreksi berdasarkan urutan temporal dan rasio amplitudo, pendekatan ini mencapai akurasi deteksi 100% setelah koreksi kesalahan awal (kesalahan awal: 58% untuk takik dikrotik).
Hasil penelitian membuktikan bahwa metode ini secara efektif mengidentifikasi semua titik fidusial (onset, puncak sistolik, takik dikrotik, puncak diastolik) pada seluruh data (50 dataset), dengan kinerja yang tangguh terhadap noise dan variabilitas fisiologis. Studi ini mengonfirmasi bahwa metode berbasis gradien cocok untuk aplikasi diagnostik yang hemat biaya dan portabel.
Unduhan
Referensi
[1] M. Feli, I. Azimi, A. Anzanpour, A. M. Rahmani, and P. Liljeberg, “An energy-efficient semi-supervised approach for on-device photoplethysmogram signal quality assessment,” Smart Heal., vol. 28, no. March, p. 100390, 2023, doi: 10.1016/j.smhl.2023.100390.
[2] S. Chatterjee and P. A. Kyriacou, “Monte carlo analysis of optical interactions in reflectance and transmittance finger photoplethysmography,” Sensors (Switzerland), vol. 19, no. 4, 2019, doi: 10.3390/s19040789.
[3] C. Wei, L. Sheng, G. Lihua, C. Yuquan, and P. Min, “Study on conditioning and feature extraction algorithm of photoplethysmography signal for physiological parameters detection,” Proc. - 4th Int. Congr. Image Signal Process. CISP 2011, vol. 4, no. December, pp. 2194–2197, 2011, doi: 10.1109/CISP.2011.6100581.
[4] Y. Aarthi, B. Karthikeyan, N. P. Raj, and M. Ganesan, “Fingertip Based Estimation of Heart Rate Using Photoplethysmography,” 2019 5th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2019, no. Icaccs, pp. 817–821, 2019, doi: 10.1109/ICACCS.2019.8728432.
[5] T. Y. Abay and P. A. Kyriacou, “Photoplethysmography in oxygenation and blood volume measurements,” Photoplethysmography Technol. Signal Anal. Appl., pp. 147–188, 2021, doi: 10.1016/B978-0-12-823374-0.00003-7.
[6] M. H. Chowdhury et al., “Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques,” Sensors (Switzerland), vol. 20, no. 11, 2020, doi: 10.3390/s20113127.
[7] F. B. Reguig, “Photoplethysmogram signal analysis for detecting vital physiological parameters: An evaluating study,” 2016 Int. Symp. Signal, Image, Video Commun. ISIVC 2016, pp. 167–173, 2016, doi: 10.1109/ISIVC.2016.7893981.
[8] J. Allen and A. Murray, “Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites,” Physiol. Meas., vol. 24, no. 2, pp. 297–307, 2003, doi: 10.1088/0967-3334/24/2/306.
[9] K. B. Kim and H. J. Baek, “Photoplethysmography in Wearable Devices: A Comprehensive Review of Technological Advances, Current Challenges, and Future Directions,” Electron., vol. 12, no. 13, 2023, doi: 10.3390/electronics12132923.
[10] T. Y. Abay and P. A. Kyriacou, Photoplethysmography Technology, Signal Analysis and Applications. 2022. doi: 10.1016/b978-0-12-823374-0.00003-7.
[11] A. Chakraborty, D. Goswami, J. Mukhopadhyay, and S. Chakrabarti, “Measurement of Arterial Blood Pressure through Single-Site Acquisition of Photoplethysmograph Signal,” IEEE Trans. Instrum. Meas., vol. 70, no. c, pp. 1–10, 2020, doi: 10.1109/TIM.2020.3011304.
[12] C. El-Hajj and P. A. Kyriacou, “Cuffless blood pressure estimation from PPG signals and its derivatives using deep learning models,” Biomed. Signal Process. Control, vol. 70, no. June, p. 102984, 2021, doi: 10.1016/j.bspc.2021.102984.
[13] S. Li, S. Jiang, S. Jiang, J. Wu, W. Xiong, and S. Diao, “A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals,” Comput. Math. Methods Med., vol. 2017, 2017, doi: 10.1155/2017/9468503.
[14] M. B. Cuadra Sanz, A. Lopez-Delis, C. Díaz Novo, and D. Delisle-Rodríguez, “A novel approach to detecting pulse onset in photoplethysmographic signal using an automatic non assisted method,” MOJ Appl. Bionics Biomech., vol. 7, no. 2, pp. 31–39, 2023, doi: 10.15406/mojabb.2023.07.00173.
[15] S. Maqsood, S. Xu, M. Springer, and R. Mohawesh, “A Benchmark Study of Machine Learning for Analysis of Signal Feature Extraction Techniques for Blood Pressure Estimation Using Photoplethysmography (PPG),” IEEE Access, vol. 9, pp. 138817–138833, 2021, doi: 10.1109/ACCESS.2021.3117969.
[16] N. Hasanzadeh, M. M. Ahmadi, and H. Mohammadzade, “Blood Pressure Estimation Using Photoplethysmogram Signal and Its Morphological Features,” IEEE Sens. J., vol. 20, no. 8, pp. 4300–4310, 2020, doi: 10.1109/JSEN.2019.2961411.
[17] M. Kachuee, M. M. Kiani, H. Mohammadzade, and M. Shabany, “Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring,” IEEE Trans. Biomed. Eng., vol. 64, no. 4, pp. 859–869, 2016, doi: 10.1109/TBME.2016.2580904.
[18] D. Biswas, N. Simoes-Capela, C. Van Hoof, and N. Van Helleputte, “Heart Rate Estimation from Wrist-Worn Photoplethysmography: A Review,” IEEE Sens. J., vol. 19, no. 16, pp. 6560–6570, 2019, doi: 10.1109/JSEN.2019.2914166.
[19] P. A. Kyriacou, “Pulse oximetry in the oesophagus,” Physiol. Meas., vol. 27, no. 1, 2006, doi: 10.1088/0967-3334/27/1/R01.
[20] T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, “Wearable photoplethysmographic sensors—past and present,” Electron. , vol. 3, no. 2, pp. 282–302, 2014, doi: 10.3390/electronics3020282.
[21] P. Monk and L. J. Munro, Maths for Chemistry. 2021.
[22] M. Sullivan, ALGEBRA & TRIGONOMETRY. 2013.
[23] & S. W. James Stewart., Lothar Redlin., “Precalculus mathematics for calculus, 6th ed,” Ref. Res. B. News, vol. 26, no. 3, 2011, [Online]. Available: http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edsgao&AN=edsgcl.257996015&lang=es&site=eds-live
[24] M. Elgendi, PPG Signal Analysis: An Introduction Using MATLAB, vol. 5, no. 3. 2020.
[25] J. Park, H. S. Seok, S. S. Kim, and H. Shin, “Photoplethysmogram Analysis and Applications: An Integrative Review,” Front. Physiol., vol. 12, no. March, pp. 1–23, 2022, doi: 10.3389/fphys.2021.808451.
[26] S. Vadrevu and M. Sabarimalai Manikandan, “A Robust Pulse Onset and Peak Detection Method for Automated PPG Signal Analysis System,” IEEE Trans. Instrum. Meas., vol. 68, no. 3, pp. 807–817, 2019, doi: 10.1109/TIM.2018.2857878.
[27] Q. Wu, “On a Feature Extraction and Classification Study for PPG Signal Analysis,” J. Comput. Commun., vol. 09, no. 09, pp. 153–160, 2021, doi: 10.4236/jcc.2021.99012.
[28] “The MIMIC II Waveform Database,” PHYSIONET. [Online]. Available: https://archive.physionet.org/physiobank/database/mimic2wdb/
[29] I. M. O. Widyantara, A. T. A. P. Kusuma, and N. M. A. E. D. Wirastuti, “Preprocessing Pada Segmentasi Citra Paru-Paru Dan Jantung Menggunakan Anisotropic Diffusion Filter,” Maj. Ilm. Teknol. Elektro, vol. 14, no. 2, p. 6, 2015, doi: 10.24843/mite.2015.v14i02p02.
[30] I. G. A. A. Diatri Indradewi, I. P. A. Bayupati, and I. K. G. Darma Putra, “Ekstraksi Ciri pada Citra Iris Menggunakan Gabor 2-D,” Maj. Ilm. Teknol. Elektro, vol. 15, no. 1, p. 16, 2016, doi: 10.24843/mite.2016.v15i01p03.
[31] I. W. A. S. Darma, I. K. G. D. Putra, and M. Sudarma, “Ekstraksi Fitur Aksara Bali Menggunakan Metode Zoning,” Maj. Ilm. Teknol. Elektro, vol. 14, no. 2, p. 44, 2015, doi: 10.24843/mite.2015.v14i02p09.

Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Majalah Ilmiah Teknologi Elektro

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Jurnal MITE (Majalah Ilmiah Teknologi Elektro) Universitas Udayana menggunakan lisensi akses terbuka Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 International).