Teknik Machine Learning dengan Metode SVM untuk Deteksi Anomali pada Kendala Jaringan FTTH
DOI:
https://doi.org/10.24843/MITE.205.v24i01.P07Kata Kunci:
Machine Learning, deteksi anomali, jaringan telekomunikasi FTTH, metode SVM, evaluasi kinerjaAbstrak
FTTH adalah teknologi yang penting dalam menyediakan layanan internet berkecepatan tinggi kepada pelanggan. Namun, gangguan atau anomali dalam jaringan FTTH dapat menyebabkan gangguan layanan yang berdampak pada pengalaman pengguna.
Data anomali dari jaringan telekomunikasi FTTH dikumpulkan dan diproses menggunakan teknik preprocessing untuk mempersiapkan data sebelum digunakan dalam pelatihan model SVM. Proses pelatihan dilakukan dengan menggunakan data pelatihan untuk mengklasifikasikan data menjadi normal atau anomali. Setelah pelatihan, dilakukan evaluasi kinerja model SVM menggunakan data pengujian yang belum pernah dilihat sebelumnya.
Hasil analisis menunjukkan kemampuan model SVM dalam mendeteksi anomali pada jaringan telekomunikasi FTTH dengan akurasi tinggi dan performa yang baik. Kesimpulan dari penelitian ini adalah bahwa teknik machine learning dengan metode SVM memiliki potensi besar dalam deteksi anomali pada jaringan telekomunikasi FTTH.
Unduhan
Referensi
[1] Chowdhury, A. A., Islam, M. R., & Mahmud, S. M. (2017). Design and implementation of GPON FTTH access network. 2017 4th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). IEEE.
[2] Kaur, N., & Singh, A. (2019). Performance evaluation of GPON-FTTH network using OPNET. 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence). IEEE.
[3] Pinninti, V., & Gandham, S. (2015). GPON: Next generation FTTH technology for broadband access. 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE.
[4] Sharma, N., & Kumar, A. (2016). A comparative study of GPON, EPON and FTTH architectures for fiber access networks. 2016 International Conference on Next Generation Intelligent Systems (ICNGIS). IEEE.
[5] Rezaei, A., Rezaei, S., & Yazdi, M. S. (2018). Performance evaluation of GPON, EPON, and WDM-PON for FTTH applications. Optical and Quantum Electronics, 50(5), 1-14.
[6] Rezaei, A., Rezaei, S., & Yazdi, M. S. (2019). Performance analysis of GPON, EPON and WDM-PON for FTTH applications. Optical Switching and Networking, 31, 41-49.
[7] Rahman, M. M., Rahman, M. S., & Moniruzzaman, M. (2014). A comparative analysis of GPON, EPON, and GEPON. International Journal of Scientific & Engineering Research, 5(6), 1306-1313.
[8] Zhang, L., & Ma, J. (2018). Design and analysis of FTTH system based on GPON technology. Journal of Physics: Conference Series, 1096(1), 012012.
[9] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
[10] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
[11] Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and computing, 14(3), 199-222.
[12] Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector machines. Microsoft Research.
[13] Steinwart, I., & Christmann, A. (2008). Support Vector Machines. Springer.
[14] Moukafih, B., Outtagarts, A., & Bouhorma, M. (2021). Machine learning for anomaly detection in optical networks: Techniques, applications and research challenges. Optical Switching and Networking, 41, 100639
[15] Kaur, H., Arora, A., & Saini, H. (2020). A systematic review on machine learning techniques for diagnosis and prognosis of COVID-19. Journal of Healthcare Engineering, 2020, 8881026.
[16] Li, T., Li, Y., & Wang, M. (2022). A comprehensive survey on deep learning-based methods for image segmentation. Pattern Recognition, 122, 108376
[17] Elsayed, S., & Sarker, I. H. (2021). Machine learning for cybersecurity: A comprehensive survey. IEEE Access, 9, 179620–179648.
[18] Shawe-Taylor, J., & Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge University Press.
[19] Schölkopf, B., & Smola, A. J. (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press.
[20] Bakhshi, T. A., & Ghita, B. (2020). Anomaly detection in network traffic: A machine learning perspective. Journal of Network and Computer Applications, 170, 102807.
[21] Akbar, M., Kavitha, V., & Goyal, N. (2022). A survey on ML-based anomaly detection in communication networks: Challenges and opportunities. Computer Networks, 203, 108640.
[22] Silva, L. M., Rios, R. E., Silva, W. S., & Nogueira, J. M. (2021). Using deep learning for real-time anomaly detection in optical access networks. IEEE Access, 9, 12649–12660.
[23] Tufekci, P., & Demir, Ö. (2021). Anomaly detection in telecommunications network traffic using unsupervised machine learning algorithms. Expert Systems with Applications, 183, 115352.
[24] Alawe, I., Carela-Español, V., Barlet-Ros, P., & Sole-Pareta, J. (2020). Anomaly detection using machine learning in 5G networks. IEEE Transactions on Network and Service Management, 17(4), 2145–2159.
[25] Wang, X., Gao, J., Chen, H., & Chen, Y. (2021). Autoencoder-based anomaly detection for optical fiber network faults. Optik, 226, 165963.
[26] Patcha, A., & Park, J. M. (2007). An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks, 51(12), 3448-3470.
[27] Aggarwal, C. C. (2016). Outlier analysis. Springer.
[28] Markou, M., & Singh, S. (2003). Novelty detection: A review—Part 1: Statistical approaches. Signal Processing, 83(12), 2481-2497.
[29] Chandola, V., & Kumar, V. (2012). Big data analytics: Anomaly detection techniques for large-scale and time-series data. In Data mining and knowledge discovery handbook (pp. 1069-1089). Springer.
[30] Pedoman Desain dan Perencanaan Integrated Optical Distribution Network (I-ODN) PP Direksi Telkom Indonesia No. PR.402.08/r.00/TK.000/COO-D00000/2019
[31] Pedoman Operasi dan Pemeliharaan Jaringan Integrated Optical Distribution Network (I-ODN) PP Direksi Telkom Indonesia No. PR.402.09/r.00/TK.000/COO-D00000/2021Zeb, K., Shami, A., & Malik, A. W. (2020). A review of green communication in 5G and beyond: Recent trends and open research challenges. Computer Networks, 178, 107200.
[32] Tata Kelola Instalasi Kabel Premises Broadband Jaringan Integrated Optical Distribution Network (I-ODN) PP Direksi Telkom Indonesia No. PR.402.03/r.00/TK.000/COO-A00000/2014
[33] Pedoman Instalasi dan Pedoman Pemasangan Jaringan Fiber to the Home (PPJ FTTH). Nomor Dokumen: PED F-014-2013 R&D Center Telkom Indonesia. 30 Desember 2013
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Majalah Ilmiah Teknologi Elektro

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Jurnal MITE (Majalah Ilmiah Teknologi Elektro) Universitas Udayana menggunakan lisensi akses terbuka Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 International).