Pertanian Vertikal Pintar: Peran IoT dalam Mewujudkan Keberlanjutan dan Efisiensi Sumber Daya
DOI:
https://doi.org/10.24843/MITE.205.v24i01.P03Kata Kunci:
efisiensi sumber daya;IoT;keberlanjutan;ketahanan pangan;Pertanian vertikal.Abstrak
Pertumbuhan populasi dan urbanisasi yang pesat menimbulkan tantangan besar dalam ketahanan pangan global dan ketahanan pangan, terutama di wilayah perkotaan. Konversi lahan pertanian menjadi kawasan pemukiman dan infrastruktur mengurangi kapasitas produksi pangan lokal, sementara perubahan iklim memperburuk ketidakpastian hasil panen. Dalam menghadapi tantangan ini, pertanian vertikal berbasis Internet of Things (IoT) muncul sebagai solusi inovatif untuk meningkatkan efisiensi dan keberlanjutan sistem produksi pangan. Teknologi IoT memungkinkan sistem pertanian vertikal untuk memantau dan mengontrol variabel lingkungan seperti suhu, kelembapan, pencahayaan, dan nutrisi tanaman secara real-time melalui sensor yang terhubung dengan kecerdasan buatan. Data yang dikumpulkan dianalisis untuk mengoptimalkan pertumbuhan tanaman, mengurangi pemborosan sumber daya, serta memaksimalkan hasil panen dengan konsumsi energi yang lebih rendah. Dari segi keberlanjutan, pertanian vertikal berbasis IoT memungkinkan produksi pangan sepanjang tahun tanpa bergantung pada lahan luas dan kondisi cuaca eksternal. Pemanfaatan teknologi ini juga membuka peluang ekonomi baru dengan menciptakan sistem pertanian mandiri di perkotaan yang dapat diintegrasikan dengan energi terbarukan. Penelitian ini mengkaji lebih lanjut bagaimana IoT berkontribusi dalam meningkatkan efisiensi sumber daya, keberlanjutan lingkungan, serta dampak ekonomi dan sosial dari pertanian vertikal, dengan tujuan menciptakan sistem produksi pangan yang lebih cerdas, adaptif, dan berkelanjutan. Berdasarkan hasil penelitian, penerapan IoT dalam pertanian vertikal terbukti sangat efektif dalam meningkatkan keberlanjutan dan mengoptimalkan efisiensi sumber daya dalam produksi pangan perkotaan. Melalui pemantauan real-time dan sistem kontrol otomatis, IoT memungkinkan pengaturan yang presisi terhadap faktor lingkungan utama seperti suhu, kelembapan, pencahayaan, dan kadar nutrisi, sehingga memastikan pertumbuhan tanaman yang optimal dengan minimnya pemborosan sumber daya.
Unduhan
Referensi
[1] Haque, A. K. M. B., Bhushan, B., & Dhiman, G. (2022). Conceptualizing smart city applications: Requirements, architecture, security issues, and emerging trends. Expert Systems, 39(5), e12753. https://doi.org/10.1111/exsy.12753.
[2] Halgamuge, M. N., Bojovschi, A., Fisher, P. M., Le, T. C., Adeloju, S., & Murphy, S. (2021). Internet of Things and autonomous control for vertical cultivation walls towards smart food growing: A review. Urban Forestry & Urban Greening, 61, 127094.
[3] Arabzadeh, V., Miettinen, P., Kotilainen, T., Herranen, P., Karakoc, A., Kummu, M., & Rautkari, L. (2023). Urban vertical farming with a large wind power share and optimised electricity costs. Applied Energy, 331, 120416.
[4] National Geographic. (n.d.). Feeding 9 billion. Retrieved from https://www.nationalgeographic.com/foodfeatures/feeding-9-billion.
[5] Adedibu, Peter Adeolu. "Ecological problems of agriculture: impacts and sustainable solutions." ScienceOpen preprints (2023).
[6] Efendi, R., & Sagita, D. (2022). Teknologi pertanian masa depan dan peranannya dalam menunjang ketahanan pangan. Sultra Journal of Mechanical Engineering, 1(1), 1-12.
[7] Raj, P., Maurya, P. K., Darjee, S., & Rout, S. (2023). Sustainable Farmer-Friendly Technologies for Soil Management. ADVANCED FARMING TECHNOLOGY, 34.
[8] Barui, P., Ghosh, P., & Debangshi, U. (2022). Vertical farming-an overview. Plant Archives (09725210), 22(2).
[9] Tooy, Dedie, et al. "Towards Global Food Security: Vertical Farming as an Innovative Solution." J Intern. of Futures Studies 6.3 (2023): 335-347.
[10] Qaiser, M. Z., Roshan, R., Raj, K., Alam, N., & Rizvi, Z. K. (2024). Vertical Farming: Exploring the Potential of The Future.
[11] Mir, M. S., Naikoo, N. B., Kanth, R. H., Bahar, F. A., Bhat, M. A., Nazir, A., ... & Ahngar, T. A. (2022). Vertical farming: The future of agriculture: A review. The Pharma Innovation Journal, 11(2), 1175-1195.
[12] Lagiman, L. (2021). Pertanian Berkelanjutan: Untuk Kedaulatan Pangan Dan Kesejahteraan Petani.
[13] Tooy, Dedie, et al. "Towards Global Food Security: Vertical Farming as an Innovative Solution." J Intern. of Futures Studies 6.3 (2023): 335-347.
[14] Kaiser, Elias, et al. "Vertical farming goes dynamic: optimizing resource use efficiency, product quality, and energy costs." Frontiers in Science 2 (2024): 1411259.
[15] Pomoni, D. I., Koukou, M. K., Vrachopoulos, M. G., & Vasiliadis, L. (2023). A Review of Hydroponics and Conventional Agriculture Based on Energy and Water Consumption, Environmental Impact, and Land Use. Energies, 16(4), 1690. https://doi.org/10.3390/en16041690.
[16] Naskali, A. T., Pinarer, O., & Tolga, A. C. (2022). Vertical farming: under climate change effect. Environment and climate-smart food production, 259-284.
[17] Ezzahoui, I., Abdelouahid, R. A., Taji, K., & Marzak, A. (2021). Hydroponic and Aquaponic Farming: Comparative Study Based on Internet of things IoT technologies. Procedia Computer Science, 191, 499-504.
[18] Fasciolo, B., Awouda, A., Bruno, G., & Lombardi, F. (2023). A smart aeroponic system for sustainable indoor farming. Procedia CIRP, 116, 636-641.
[19] Van Gerrewey, T., Boon, N., & Geelen, D. (2021). Vertical farming: The only way is up?. Agronomy, 12(1), 2.[26]
[20] Gurung, Lalendra & Rawal, Janak & Joshi, Ganesh & Rc, Puspa & Mandal, Ashmita. (2024). Vertical Farming in Urban Agriculture: Opportunities, Challenges, and Future Directions. 10.26480/bda.02.2024.89.95.
[21] Zhou, Y. (2024). Technological Innovation and Significance of Vertical Farming System in High-Density Urban Areas. In E3S Web of Conferences (Vol. 579, p. 03001). EDP Sciences.
[22] Shao, Y., Li, J., Zhou, Z., Hu, Z., Zhang, F., Cui, Y., & Chen, H. (2021). The effects of vertical farming on indoor carbon dioxide concentration and fresh air energy consumption in office buildings. Building and Environment, 195, 107766.
[23] Hossain, A., Sarkar, S., Rahman, M. A., Bhatt, R., Garai, S., Saha, S., ... & Meena, R. S. (2021). Ecological intensification for sustainable agriculture in South Asia. Ecological Intensification of Natural Resources for Sustainable Agriculture, 171-213.
[24] Kumar, R., Singh, M., & Gupta, A. (2021). IoT Applications in Smart Agriculture: A Review. Journal of Agricultural Technology, 17(5), 89-104.
[25] Chen, L., Zhao, X., & Li, Y. (2022). IoT-Driven Vertical Farming for Sustainable Urban Agriculture. Sustainable Agriculture Journal, 12(3), 56-67.
[26] Ali, M., Ahmed, S., & Zaman, T. (2023). Enhancing Vertical Farming through IoT and AI Integration: A Sustainable Approach. Journal of Smart Agriculture Systems, 8(2), 45-59.
[27] Rathor, A. S., Choudhury, S., Sharma, A., Nautiyal, P., & Shah, G. (2024). Empowering vertical farming through IoT and AI-Driven technologies: A comprehensive review. Heliyon.
[28] Ibrahim, L. A., Shaghaleh, H., El-Kassar, G. M., Abu-Hashim, M., Elsadek, E. A., & Alhaj Hamoud, Y. A. (2023). A Sustainable Path to Food Sovereignty and Enhanced Water Use Efficiency. Water 2023, 15, 4310.
[29] Nesheli, S. A., & Salaj, A. T. (2024). Urban farming for social benefit. IFAC-PapersOnLine, 58(3), 351-356.
[30] Shrivastava, A., Nayak, C. K., Dilip, R., Samal, S. R., Rout, S., & Ashfaque, S. M. (2023). Automatic robotic system design and development for vertical hydroponic farming using IoT and big data analysis. Materials Today: Proceedings, 80, 3546-3553.
[31] Yadav, S., & Swamy, V. (2022). IOT based Vertical Farming using PH calibration and controlling. In Proceedings of the International Conference on Innovative Computing & Communication (ICICC).
[32] Dadheech, P., Kumar, A., Singh, V., Raja, L., & Poonia, R. C. (2021). A neural network-based approach for pest detection and control in modern agriculture using internet of things. In Smart agricultural services using deep learning, big data, and IoT (pp. 1-31). IGI Global.
[33] Kour, K., Gupta, D., Gupta, K., Dhiman, G., Juneja, S., Viriyasitavat, W., Mohafez, H., & Islam, M. A. (2022). Smart-Hydroponic-Based Framework for Saffron Cultivation: A Precision Smart Agriculture Perspective. Sustainability, 14(3), 1120.
[34] Ng, H. T., Tham, Z. K., Rahim, N. A. A., Rohim, A. W., Looi, W. W., & Ahmad, N. S. (2023). IoT-enabled system for monitoring and controlling vertical farming operations. International Journal of Reconfigurable and Embedded Systems, 12(3), 453.
[35] Naranjani, B., Najafianashrafi, Z., Pascual, C., Agulto, I., & Chuang, P. Y. A. (2022). Computational analysis of the environment in an indoor vertical farming system. International Journal of Heat and Mass Transfer, 186, 122460.
[36] Kabir, M. S. N., Reza, M. N., Chowdhury, M., Ali, M., Samsuzzaman, Ali, M. R., Lee, K. Y., & Chung, S.-O. (2023). Technological Trends and Engineering Issues on Vertical Farms: A Review. Horticulturae, 9(11), 1229.
[37] Ghazal, S., Munir, A., & Qureshi, W. S. (2024). Computer vision in smart agriculture and precision farming: Techniques and applications. Artificial Intelligence in Agriculture.
[38] Kim, J., Park, H., Seo, C., Kim, H., Choi, G., Kim, M., Kim, B., & Lee, W. (2024). Sustainable and Inflatable Aeroponics Smart Farm System for Water Efficiency and High-Value Crop Production. Applied Sciences, 14(11), 4931.
[39] Dwikiarta, I. M. S., Sastra, N. P., & Wiharta, D. M. (2021). Kinerja jaringan sensor nirkabel untuk model smart building. Majalah Ilmiah Teknologi Elektro, 20(2), 211.
[40] Wiradani, P. A. P., Jasa, L., & Rahardjo, P. (2022). Analisis Perbandingan Produktivitas Material Budidaya Akuaponik Berbasis IoT (Internet of Things) dengan Budidaya Akuaponik Konvensional. Majalah Ilmiah Teknologi Elektro, 21(2), 263.
[41] Chowdhury, M., Islam, M.N., Reza, M.N. et al. Sensor-Based Nutrient Recirculation for Aeroponic Lettuce Cultivation. J. Biosyst. Eng. 46, 81–92 (2021).
[42] Akateva, L. V., Kalinin, V. A., Ivanov, V. K., Ivanov, A. V., & Kholkin, A. I. (2022). Development of an automated vertical farm module for growing plants using additive technology. Theoretical Foundations of Chemical Engineering, 56(4), 618-625.
[43] Wei, Z., & Fang, W. (2024). UV-NDVI for real-time crop health monitoring in vertical farms. Smart Agricultural Technology, 8, 100462.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Majalah Ilmiah Teknologi Elektro

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Jurnal MITE (Majalah Ilmiah Teknologi Elektro) Universitas Udayana menggunakan lisensi akses terbuka Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 International).