Deteksi Adaptif Titik Kunci Sinyal Photoplethysmography (PPG) dengan Pemodelan Gradien untuk Identifikasi Pola Fisiologis
DOI:
https://doi.org/10.24843/MITE.205.v24i01.P05Keywords:
V2X; Simulasi; Sistem Transportasi Cerdas; Keselamatan Berkendaraan.Abstract
Abstract— Photoplethysmography (PPG) is a non-invasive optical technique for cardiovascular health monitoring, such as blood pressure estimation and arterial stiffness analysis. However, detecting fiducial points in PPG signals such as the onset, systolic peak, dicrotic notch, and diastolic peak is often hindered by noise, baseline wander, and physiological variability. Although various methods have been proposed, such as time-frequency domain analysis and machine learning algorithms, these approaches still have limitations, including high computational complexity and susceptibility to noise.
This study proposes a gradient-based analysis approach to improve the accuracy of fiducial point detection in PPG signals. The gradient method is used to detect local maxima and minima in the PPG signal. By incorporating validation and correction modules based on temporal order and amplitude ratios, the approach achieves 100% detection accuracy after initial error correction (initial error rate: 58% for the dicrotic notch).
The results demonstrate that this method effectively identifies all fiducial points (onset, systolic peak, dicrotic notch, diastolic peak) in 50 out of 50 datasets, with robust performance against noise and physiological variability. This study confirms that the gradient-based method is suitable for cost-efficient, portable diagnostic applications.
Downloads
References
[1] M. Feli, I. Azimi, A. Anzanpour, A. M. Rahmani, and P. Liljeberg, “An energy-efficient semi-supervised approach for on-device photoplethysmogram signal quality assessment,” Smart Heal., vol. 28, no. March, p. 100390, 2023, doi: 10.1016/j.smhl.2023.100390.
[2] S. Chatterjee and P. A. Kyriacou, “Monte carlo analysis of optical interactions in reflectance and transmittance finger photoplethysmography,” Sensors (Switzerland), vol. 19, no. 4, 2019, doi: 10.3390/s19040789.
[3] C. Wei, L. Sheng, G. Lihua, C. Yuquan, and P. Min, “Study on conditioning and feature extraction algorithm of photoplethysmography signal for physiological parameters detection,” Proc. - 4th Int. Congr. Image Signal Process. CISP 2011, vol. 4, no. December, pp. 2194–2197, 2011, doi: 10.1109/CISP.2011.6100581.
[4] Y. Aarthi, B. Karthikeyan, N. P. Raj, and M. Ganesan, “Fingertip Based Estimation of Heart Rate Using Photoplethysmography,” 2019 5th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2019, no. Icaccs, pp. 817–821, 2019, doi: 10.1109/ICACCS.2019.8728432.
[5] T. Y. Abay and P. A. Kyriacou, “Photoplethysmography in oxygenation and blood volume measurements,” Photoplethysmography Technol. Signal Anal. Appl., pp. 147–188, 2021, doi: 10.1016/B978-0-12-823374-0.00003-7.
[6] M. H. Chowdhury et al., “Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques,” Sensors (Switzerland), vol. 20, no. 11, 2020, doi: 10.3390/s20113127.
[7] F. B. Reguig, “Photoplethysmogram signal analysis for detecting vital physiological parameters: An evaluating study,” 2016 Int. Symp. Signal, Image, Video Commun. ISIVC 2016, pp. 167–173, 2016, doi: 10.1109/ISIVC.2016.7893981.
[8] J. Allen and A. Murray, “Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites,” Physiol. Meas., vol. 24, no. 2, pp. 297–307, 2003, doi: 10.1088/0967-3334/24/2/306.
[9] K. B. Kim and H. J. Baek, “Photoplethysmography in Wearable Devices: A Comprehensive Review of Technological Advances, Current Challenges, and Future Directions,” Electron., vol. 12, no. 13, 2023, doi: 10.3390/electronics12132923.
[10] T. Y. Abay and P. A. Kyriacou, Photoplethysmography Technology, Signal Analysis and Applications. 2022. doi: 10.1016/b978-0-12-823374-0.00003-7.
[11] A. Chakraborty, D. Goswami, J. Mukhopadhyay, and S. Chakrabarti, “Measurement of Arterial Blood Pressure through Single-Site Acquisition of Photoplethysmograph Signal,” IEEE Trans. Instrum. Meas., vol. 70, no. c, pp. 1–10, 2020, doi: 10.1109/TIM.2020.3011304.
[12] C. El-Hajj and P. A. Kyriacou, “Cuffless blood pressure estimation from PPG signals and its derivatives using deep learning models,” Biomed. Signal Process. Control, vol. 70, no. June, p. 102984, 2021, doi: 10.1016/j.bspc.2021.102984.
[13] S. Li, S. Jiang, S. Jiang, J. Wu, W. Xiong, and S. Diao, “A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals,” Comput. Math. Methods Med., vol. 2017, 2017, doi: 10.1155/2017/9468503.
[14] M. B. Cuadra Sanz, A. Lopez-Delis, C. Díaz Novo, and D. Delisle-Rodríguez, “A novel approach to detecting pulse onset in photoplethysmographic signal using an automatic non assisted method,” MOJ Appl. Bionics Biomech., vol. 7, no. 2, pp. 31–39, 2023, doi: 10.15406/mojabb.2023.07.00173.
[15] S. Maqsood, S. Xu, M. Springer, and R. Mohawesh, “A Benchmark Study of Machine Learning for Analysis of Signal Feature Extraction Techniques for Blood Pressure Estimation Using Photoplethysmography (PPG),” IEEE Access, vol. 9, pp. 138817–138833, 2021, doi: 10.1109/ACCESS.2021.3117969.
[16] N. Hasanzadeh, M. M. Ahmadi, and H. Mohammadzade, “Blood Pressure Estimation Using Photoplethysmogram Signal and Its Morphological Features,” IEEE Sens. J., vol. 20, no. 8, pp. 4300–4310, 2020, doi: 10.1109/JSEN.2019.2961411.
[17] M. Kachuee, M. M. Kiani, H. Mohammadzade, and M. Shabany, “Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring,” IEEE Trans. Biomed. Eng., vol. 64, no. 4, pp. 859–869, 2016, doi: 10.1109/TBME.2016.2580904.
[18] D. Biswas, N. Simoes-Capela, C. Van Hoof, and N. Van Helleputte, “Heart Rate Estimation from Wrist-Worn Photoplethysmography: A Review,” IEEE Sens. J., vol. 19, no. 16, pp. 6560–6570, 2019, doi: 10.1109/JSEN.2019.2914166.
[19] P. A. Kyriacou, “Pulse oximetry in the oesophagus,” Physiol. Meas., vol. 27, no. 1, 2006, doi: 10.1088/0967-3334/27/1/R01.
[20] T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, “Wearable photoplethysmographic sensors—past and present,” Electron. , vol. 3, no. 2, pp. 282–302, 2014, doi: 10.3390/electronics3020282.
[21] P. Monk and L. J. Munro, Maths for Chemistry. 2021.
[22] M. Sullivan, ALGEBRA & TRIGONOMETRY. 2013.
[23] & S. W. James Stewart., Lothar Redlin., “Precalculus mathematics for calculus, 6th ed,” Ref. Res. B. News, vol. 26, no. 3, 2011, [Online]. Available: http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edsgao&AN=edsgcl.257996015&lang=es&site=eds-live
[24] M. Elgendi, PPG Signal Analysis: An Introduction Using MATLAB, vol. 5, no. 3. 2020.
[25] J. Park, H. S. Seok, S. S. Kim, and H. Shin, “Photoplethysmogram Analysis and Applications: An Integrative Review,” Front. Physiol., vol. 12, no. March, pp. 1–23, 2022, doi: 10.3389/fphys.2021.808451.
[26] S. Vadrevu and M. Sabarimalai Manikandan, “A Robust Pulse Onset and Peak Detection Method for Automated PPG Signal Analysis System,” IEEE Trans. Instrum. Meas., vol. 68, no. 3, pp. 807–817, 2019, doi: 10.1109/TIM.2018.2857878.
[27] Q. Wu, “On a Feature Extraction and Classification Study for PPG Signal Analysis,” J. Comput. Commun., vol. 09, no. 09, pp. 153–160, 2021, doi: 10.4236/jcc.2021.99012.
[28] “The MIMIC II Waveform Database,” PHYSIONET. [Online]. Available: https://archive.physionet.org/physiobank/database/mimic2wdb/
[29] I. M. O. Widyantara, A. T. A. P. Kusuma, and N. M. A. E. D. Wirastuti, “Preprocessing Pada Segmentasi Citra Paru-Paru Dan Jantung Menggunakan Anisotropic Diffusion Filter,” Maj. Ilm. Teknol. Elektro, vol. 14, no. 2, p. 6, 2015, doi: 10.24843/mite.2015.v14i02p02.
[30] I. G. A. A. Diatri Indradewi, I. P. A. Bayupati, and I. K. G. Darma Putra, “Ekstraksi Ciri pada Citra Iris Menggunakan Gabor 2-D,” Maj. Ilm. Teknol. Elektro, vol. 15, no. 1, p. 16, 2016, doi: 10.24843/mite.2016.v15i01p03.
[31] I. W. A. S. Darma, I. K. G. D. Putra, and M. Sudarma, “Ekstraksi Fitur Aksara Bali Menggunakan Metode Zoning,” Maj. Ilm. Teknol. Elektro, vol. 14, no. 2, p. 44, 2015, doi: 10.24843/mite.2015.v14i02p09.

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Majalah Ilmiah Teknologi Elektro

This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal MITE (Majalah Ilmiah Teknologi Elektro) Universitas Udayana menggunakan lisensi akses terbuka Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 International).