JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

Implementasi Pipeline CI/CD dengan Github Actions
dalam Mengurangi Downtime pada Aplikasi Berbasis
Web

| Komang Wahyu Pranata?!, | Wayan Santiyasa®?

aProgram Studi Informatika, Fakultas Matematika dan limu Pengetahuan Alam,
Universitas Udayana
Jalan Raya Kampus Udayana, Bukit Jimbaran, Kuta Selatan, Badung, Bali, Indonesia
Tpranata.2308561026@student.unud.ac.id
2santiyasa@unud.ac.id

Abstract

This research focuses on optimizing the application deployment process to minimize prolonged
downtime, which is often caused by the architecture that don’t supports automation of program
code to the deployment server. To overcome this problem, Continuous Integration/Continuous
Deployment (CI/CD) pipeline using GitHub Workflow is implemented by involving three main
components: local development server, GitHub (repository and actions), and deployment server.
The pipeline design includes three types of branches in the GitHub repository: dev, staging, and
master. The workflow process starts from local development to the dev branch, then integrated
to staging for integration testing, and finally to master which triggers automatic deployment actions
to the server using the FTP protocol. From the results of the system testing, the metrics used are
downtime and deployment time. The results show that the implementation of the pipeline
successfully achieved zero downtime (0 seconds) both in the initial deployment and the
deployment of changes. However, the deployment time is still relatively long due to the use of the
FTP protocol. Although the application does not experience downtime, the long deployment time
has the potential to make the application not optimally usable during the deployment process.

Keywords: CI/CD, Automation, Github Actions, Reducing Downtime, Application Deployment.

1. Pendahuluan

Dalam pengembangan aplikasi, terdapat banyak metode pengembangan yang dapat digunakan.
Pada umumnya, metode-metode yang ada dimulai dari tahapan analisis dan diakhiri dengan
tahap delivery/deployment. Setelah tahap deployment, aplikasi dapat saja dilakukan maintenance
yang bertujuan untuk meningkatkan efisiensi, skalabilitas, maupun pengalaman pengguna dari
system [1]. Maintenance juga akan dilakukan apabila terjadi hal-hal yang tidak terduga seperti
serangan keamanan atau bug terjadi pada sistem. Pada tahap ini, aplikasi akan masuk ke masa
downtime yang di mana aplikasi belum dapat diakses oleh end-user. Downtime sistem yang
berkepanjangan akan berpengaruh pada bisnis yang menggunakan sistem tersebut. Bisnis akan
mengalami penurunan keuntungan, produktivitas, dan tingginya biaya yang harus dikeluarkan
untuk mengganti kerugian yang dialami selama sistem down [2].

Oleh sebab itu, diperlukan sebuah metode yang mampu untuk mengurangi downtime pada
sistem. Metode tradisional dengan memanfaatkan metode SDLC yang ada masih belum cukup
untuk mengurangi downtime pada sistem. Metode tradisional cenderung memakan waktu yang
lama dalam integrasi kode program, testing, hingga deployment yang akan berpengaruh pada
waktu downtime sistem.

CI/CD merupakan salah satu metode dalam pengembangan perangkat lunak yang
memungkinkan kode program dapat di-deploy secara otomatis. Terdapat dua aktivitas pada
CI/CD, yaitu continuous integration (Cl) dan continuous delivery/deployment (CD). Cl merupakan
tahapan integrasi seluruh kode program dalam satu buah repositori. Sedangkan CD adalah

137

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

tahapan lanjutan dari CD yang memungkinkan kode program yang sudah terintegrasi langsung
di-deploy secara otomatis [3]. Pada penelitian yang dilakukan oleh Praveen pada 2022,
implementasi CI/CD pada aplikasi berbasis bahasa pemrograman Java berhasil untuk
mengurangi downtime pada aplikasi, hingga mencapai zero downtime [4]. Oleh sebab itu, pada
penelitian ini penulis melakukan implementasi deployment pipeline dengan CI/CD yang
diharapkan mampu untuk mengurangi downtime pada aplikasi. Platform yang digunakan oleh
penulis dalam implementasi CI/CD adalah Github Actions. Github Actions merupakan platform
integrasi CI/CD dalam sebuah repositori GitHub [5]. Github Actions digunakan pada penelitian ini
karena sudah terintegrasi dengan repositori yang sudah ada dan dukungan terhadap beberapa
pustaka maupun bahasa pemrograman yang sudah ada. Pada penelitian ini, penulis melakukan
integrasi pipeline pada sebuah sistem informasi pengunggahan proyek mahasiswa Informatika
yang akan disambungkan dengan web server.

2. Metode Penelitian

Pada penelitian ini, terdapat metode yang dilakukan:

Desain Fipeline CIf
cD

Identifikasi Masalah >

A 4

Implementasi Pipeling, » Pengujian Sistem

Gambar 1. Alur Penelitian
2.1. Identifikasi Masalah

Masalah yang diangkat pada penelitian ini adalah downtime aplikasi yang berkepanjangan yang
umumnya disebabkan karena tidak adanya arsitektur dari aplikasi yang memungkinkan adanya
otomasi kode program ke deployment server. Oleh sebab itu, akan diimplementasikan

2.2. Desain Pipeline CI/CD
Sebelum melakukan implementasi pada sistem, dilakukan desain terhadap pipeline yang akan

digunakan. Terdapat 3 buah komponen penting pada pipeline, yaitu: local development server,
GitHub workflow (repository dan actions), dan deployment server.

Github
Workflow

D e
R

e
Local Development
Github Repository
Continuous
Integration

__

Siomm——

Github Actions Deployment Server

Continuous
Development

Gambar 2. Diagram Pipeline CI/CD

138

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

Pada repositori di GitHub terdapat 3 jenis branch:

a. Dev
Merupakan branch untuk menyimpan perubahan yang di-push dari local development.
Nama branch disesuaikan dengan fitur yang dibangun (contoh: dev/transaction,
dev/authentication, dev/sales, dll.)

b. Staging
Merupakan branch yang digunakan sebagai tempat integrasi dari banyak branch dev
sebelum masuk ke deployment. Branch staging sekaligus menjadi tempat testing dari
sistem.

c. Master

Merupakan branch yang digunakan oleh aplikasi yang sudah siap untuk di-deploy ke
server.

master t

staging

dev/sales

dev/auth

Gambar 3. Diagram Branch Repositori GitHub

Kode program yang ada di local akan dibawa ke repository GitHub pada branch dev yang sesuai.
Setelah satu fitur selesai, maka perubahan pada branch dev tersebut akan dibawa ke branch
staging untuk diintegrasikan. Setelah kode program terintegrasi, dilakukan integration test pada
aplikasi yang ada di branch staging. Setelah itu, kode program pada branch staging akan dibawa
ke branch master.

Pada branch master, disiapkan sebuah deployment actions yang akan dijalankan apabila
terdapat perubahan pada kode program. Deployment actions berisi perintah yang akan
menjalankan deployment ke server. Deployment akan dilakukan dengan protokol FTP.

2.3. Implementasi Pipeline

Sebelum melakukan integrasi pipeline, terlebih dahulu menyiapkan akun FTP pada web server.

Setelah membuat akun FTP, buat sebuah folder bernama “.github/workflows” pada repositori
GitHub. Pada folder tersebut, dibuat sebuah file dengan tipe yml yang terlihat pada tabel 1.

139

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

Tabel 1. Kode GitHub Actions

No. Kode Github Actions
1 name: Laravel CI/CD Pipeline
2 on:
3 push:
4 branches: [master]
5 pull_request:
6 branches: [master]
7 jobs:
8 - name: Create FTP deployment script
9 run: |
10 #!/bin/bash
11 FTP_HOST="${{ secrets.FTP_HOST }}"
12 FTP_USER="${{ secrets.FTP_USERNAME }}"
13 FTP_PASS="${{ secrets.FTP_PASSWORD }}"
14 FTP_PORT="${{ secrets.FTP_PORT }}"
15 REMOTE_DIR="${{ secrets.FTP_SERVER_DIR }}"
16 cat > ftp_commands.txt << EOF_LFTP
17 open -u $FTP_USER,$FTP_PASS -p $FTP_PORT $FTP_HOST
18 cd SREMOTE_DIR
19 mirror --reverse --delete --verbose --exclude-glob .env --exclude-glob
storage/logs/*.log ./ ./
20 chmod 755 public
21 chmod -R 755 storage
22 chmod -R 755 bootstrap/cache
23 quit
24 EOF_LFTP
25 Iftp -f ftp_commands.txt
rm -f ftp_commands.txt
26 if [$? -eq 0]; then
27 echo "FTP deployment successful!"
28 else
29 echo "FTP deployment failed!"
30 exit 1
31 fi
32 rm -f fip_commands.txt

Pada kode tersebut, terdapat dua bagian yaitu “on” dan “jobs”. On menandakan kapan actions

140

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

ini akan dijalankan. Sedangkan “jobs” menandakan hal apa saja yang akan dijlankan.

Pertama, pada bagian on diatur branch yang akan dipasang actions adalah branch master.
Actions akan dijalankan setiap branch master menerima kode baru yang berasal dari unggahan
langsung (push) atau dari branch lain (pull_request).

Selanjutnya, pada bagian jobs diberikan sebuah action yang menjalankan perintah bash.
Disiapkan beberapa variabel: FTP_HOST, FTP_USER, FTP_PASS, FTP_POST,
REMOTE_DIR. Variabel tersebut berfungsi untuk melakukan koneksi FTP pada web server. Nilai
dari variabel tersebut diambil dari tempat penyimpanan rahasia yang disediakan oleh GitHub.

Setelah itu, FTP diatur dalam mode pasif. Dibuka koneksi dengan menggunakan perintah “open”
dengan nilai konfigurasi yang sudah diatur sebelumnya. Pada koneksi FTP, dijalankan perintah
mirror yang akan me-copy seluruh file pada repositori dengan web server. Setelah mirror berjalan,
jika berjalan dengan sukses maka akan menampilkan pesan sukses. Sebaliknya, akan
menampilkan pesan gagal.

2.4. Pengujian Sistem

Setelah sistem terintegrasi, sebelum dilakukan deployment akan dilakukan pengujian. Pengujian
yang dilakukan adalah integration test.

Berikut metriks yang digunakan pada integration test:

Tabel 2. Metriks Integration Test

No. Nama Keterangan

1. Downtime Semakin lama, semakin buruk.

2. Deployment Time Semakin lama, semakin buruk

3. Hasil dan Pembahasan

Setelah dilakukan deployment dengan GitHub Actions didapatkan hasil untuk mengunggah
aplikasi untuk pertama kali seperti berikut

Tabel 2. Hasil Test Unggahan Pertama Kali

No. Nama Nilai

1. Downtime Os

2. Deployment Time 1jam, 15 menit

Adapun hasil untuk mengunggah perubahan pada aplikasi:

Tabel 3. Hasil Test Perubahan

No. Nama Nilai
1. Downtime Os
2. Deployment Time 1 jam, 14 menit

Hasil menunjukkan bahwa deployment yang dilakukan berhasil untuk tidak membuat downtime.
Namun, deployment time masih cukup lama. Meskipun tidak dalam downtime, aplikasi memiliki
kemungkinan belum dapat digunakan secara maksimal karena masih ada perubahan yang belum

141

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

di-deploy dengan sempurna.

4, Kesimpulan

Implementasi berhasil untuk dilakukan. Downtime pada aplikasi berhasil diturunkan hingga
menjadi 0 detik (zero downtime). Namun, terdapat efek samping yang didapat yang di mana
deployment time menjadi sangat lama karena masih menggunakan protokol FTP. Hal ini dapat
menyebabkan aplikasi yang masih berada pada masa deployment belum dapat digunakan
secara sempurna.

Untuk ke depannya, pada penelitian selanjutnya dapat untuk menggunakan protokol SSH atau
HTTP yang lebih cepat dalam mengunggah file sehingga waktu deployment dapat diturunkan.

Daftar Pustaka

[11 A. Noor, B. Talal, I. Muhammad, “A Comprehensive Framework for Intelligent, Scalable,
and Performance-Optimized Software Development” IEEE Access, p 74063, 2025

[2] C. Adcock, Portnox, 5 June 2025. [Online]. Available:
https://www.portnox.com/blog/network-security/the-business-operational-impacts-of-
system-downtime/. [2 July 2025]

[3] “Cl/CD Pipelines In Kubernetes: Accelerating Software Development And Deployment”
EPH-International Journal of Science and Engineering. vol. 8, no. 3, 2022

[4] P. K. Koppanati, “Achieving Zero-Downtime Deployment for Java Applications Using
GitLab CI/CD” Journal of Scientific and Engineering Research. vol. 9

[5] A. Decan, “On the Use of GitHub Actions in Software Development Repositories”.
https://doi.org/10.1109/ICSME55016.2022.00029

142

	1. Pendahuluan
	2. Metode Penelitian
	2.1. Identifikasi Masalah
	2.2. Desain Pipeline CI/CD
	2.3. Implementasi Pipeline
	2.4. Pengujian Sistem

	3. Hasil dan Pembahasan
	4. Kesimpulan

