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Abstract 

 
This study addresses the communication gap between deaf and hearing communities by 
developing an optimal sign language recognition system for Indonesian Sign Language System 
(SIBI) static gestures. A comprehensive comparative analysis was conducted on four VGG 
architecture variants (VGG-11, VGG-13, VGG-16, and VGG-19) using a dataset across 10 SIBI 
word classes. The research employed systematic methodology including data extraction from 
video sources, preprocessing with augmentation techniques, model training over 25 epochs, and 
comprehensive evaluation using accuracy, precision, recall, and F1-score metrics. Results 
demonstrate that VGG-16 achieves superior performance with 83.4% accuracy, 85.2% precision, 
83.4% recall, and 82.9% F1-score, establishing optimal balance between model complexity and 
generalization capability. The study reveals diminishing returns phenomenon in VGG-19 despite 
increased architectural complexity. Computational efficiency analysis shows VGG-11 provides 
highest efficiency score (10.46 GFLOPs) while VGG-16 maintains optimal accuracy-efficiency 
trade-off. These findings provide crucial insights for developing effective assistive technology 
solutions that bridge communication barriers for the Indonesian deaf community. 
 
Keywords: sign language recognition, convolutional neural network, VGG architecture, SIBI 
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1. Pendahuluan  
 
Komunikasi merupakan kebutuhan dasar manusia dalam berinteraksi dan menyampaikan 
informasi[1], [2], [3]. Bagi penyandang tunarungu dan tunawicara, komunikasi dilakukan melalui 
bahasa isyarat[4] yang merupakan bahasa visual gestural menggunakan gerakan tangan, 
ekspresi wajah, dan postur tubuh[5]. Di Indonesia, Sistem Isyarat Bahasa Indonesia (SIBI) telah 
ditetapkan sebagai salah satu bahasa isyarat resmi yang digunakan dalam komunikasi formal[6], 
khususnya dalam lingkungan pendidikan dan pelayanan publik. Namun dalam praktiknya, bagi 
penyandang tunarungu komunikasi perlu difasilitasi dengan bahasa khusus yang sesuai untuk 
kebutuhan sehari-hari agar dapat berkomunikasi dan memahami komunikasi[7]. Namun masalah 
utama yang dihadapi adalah adanya kesenjangan komunikasi antara penyandang tunarungu 
dengan masyarakat umum yang tidak memahami bahasa isyarat, sehingga diperlukan solusi 
teknologi yang dapat menjembatani kesenjangan komunikasi ini[8]. 
 
Perkembangan teknologi kecerdasan buatan seperti pada computer vision telah membuka 
peluang besar untuk pengembangan bahasa isyarat[9]. Peneliti sebelumnya sudah pernah 
melakukan penelitian tentang Bahasa Isyarat Indonesia (BISINDO) statis menggunakan 
Convolutional Neural Network (CNN) telah terbukti sebagai metode yang efektif untuk klasifikasi 
citra, termasuk dalam pengenalan bahasa isyarat[3]. Seperti yang dikemukakan oleh Sholawati 
dkk, "Convolutional Neural Network merupakan salah satu jenis algoritma neural network yang 
didesain untuk memproses data citra"[6].  
 



JNATIA Volume 4, Nomor 1, November 2025     p-ISSN: 2986-3929 
Jurnal Nasional Teknologi Informasi dan Aplikasinya   e-ISSN: 3032-1948 

190 

Implementasi arsitektur CNN sebagai pengenalan bahasa isyarat SIBI telah menunjukkan hasil 
yang menjanjikan dalam beberapa penelitian terdahulu. Rivan & Hartoyo berhasil 
mengembangkan sistem klasifikasi isyarat bahasa Indonesia menggunakan arsitektur VGG-16 
dan AlexNet dengan tingkat akurasi yang tertinggi mencapai 99,32% pada setiap huruf 
menggunakan VGG-16 dengan optimizer Adam[10]. Demikian pula, penelitian oleh Sholawati dkk 
yang mengembangkan aplikasi pengenalan bahasa isyarat abjad SIBI berbasis web 
menggunakan CNN mencapai akurasi sebesar 80,76%[6]. Siddik juga melakukan perbandingan 
antara VGG-16 dan ResNet-50 untuk klasifikasi hand sign language digits dan menemukan 
bahwa VGG-16 memberikan hasil terbaik dengan akurasi sebesar 97,29%, presisi sebesar 
97,38%, recall sebesar 97,45%, dan F1 score sebesar 97,36%[11]. Meski menunjukkan hasil 
positif, penelitian-penelitian sebelumnya memiliki beberapa keterbatasan. Sebagian besar 
penelitian berfokus pada pengenalan gestur dinamis atau real-time yang memerlukan komputasi 
yang besar, sedangkan pengenalan bahasa isyarat statis masih memerlukan eksplorasi lebih 
lanjut. Sebagaimana dikemukakan oleh Giamiko & Tjiong, pemilihan arsitektur yang tepat dan 
dataset yang sesuai dapat membantu menghasilkan model klasifikasi yang lebih akurat[12]. 
 
Pada penelitian sebelumnya menyatakan bahwa arsitektur VGG mendapat hasil akurasi yang 
optimal untuk menangatasi masalah klasifikasi maupun deteksi[13], [14]. Secara lebih spesifik, 
VGG-16 mengungguli varian lain dari segi hasil yang diharapkan dibanding arsitektur VGG 
lainnya[11], [15], [16]. Untuk memastikan hal tersebut, peneliti ingin membandingkan berbagai 
varian arsitektur VGG khususnya dalam pengenalan bahasa isyarat SIBI statis. Penelitian ini 
bertujuan untuk mengembangkan model terbaik penerjemah bahasa isyarat SIBI statis dengan 
membandingkan performa berbagai arsitektur VGG (VGG-11, VGG-13, VGG-16, dan VGG-19). 
Melalui evaluasi komprehensif terhadap keempat varian arsitektur tersebut, penelitian ini 
diharapkan dapat memberikan kontribusi dalam menentukan arsitektur VGG yang paling optimal 
untuk klasifikasi bahasa isyarat SIBI statis dan mengetahui beban komputasi dari setiap arsitektur 
menggunakan Giga Floating Point Operations (GFLOPs), sehingga dapat mendukung 
pengembangan teknologi assistive yang lebih baik bagi komunitas tunarungu di Indonesia. 
 
2. Metode Penelitian 
 
Penelitian ini mengadopsi pendekatan eksperimental dengan tahapan terstruktur yang meliputi 
akuisisi dan ekstraksi data, persiapan dan preprocessing data, perancangan model, pelatihan 
model, evaluasi model, fine tuning, hingga implementasi sistem dengan prediksi. Setiap tahap 
dirancang secara sistematis untuk memastikan validitas data dan reliabilitas model dalam 
melakukan klasifikasi isyarat statis SIBI. Diagram alur keseluruhan proses dapat dilihat pada 
Gambar 1 yang menggambarkan seluruh alur proses penelitian. 
 

  
 

Gambar 1. Alur Proses Penelitian 
 
2.1  Akuisisi dan Ekstraksi Data 
 
Dataset yang digunakan diperoleh dari Indonesian Sign Language System (SIBI) Dataset: 
Sentences Enhanced by Diverse Facial Expressions for Total Communication[17]. Dataset 
tersebut terdiri atas video beresolusi tinggi (1280×720 piksel) dengan 30 frame per detik, yang 
mencakup kalimat beranotasi dalam SIBI serta tujuh jenis ekspresi wajah berbeda. Dari kumpulan 
video tersebut, dipilih 10 video yang berisi kata sederhana, yaitu: ajak, aku, bapak, buku, dia, ibu, 
kakak, kamu, saya, dan tugas. Kata-kata yang dipilih merupakan kata yang paling sering 
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digunakan dan umum serta banyak digunakan. Dari kumpulan video kata tersebut kemudian 
dibagi menjadi beberapa frame sesuai panjang video lalu diambil 6 frame yang memiliki 
perbedaan visual. Kemudian frame yang dipilih akan disimpan sebagai dataset statis. Total frame 
yang dijadikan image untuk dataset statis berjumlah 4250 data untuk pelatihan, 350 data untuk 
validasi, dan 350 data untuk testing. Masing-masing 425 data perkata untuk data latih, 35 data 
per kata untuk validasi, dan 35 data perkata untuk testing. 
 
Ekstraksi video menjadi kumpulan citra statis dilakukan melalui proses key-frame selection 
berbasis perhitungan perbedaan visual antar frame. Metode structural similarity index (SSIM) dan 
color histogram difference digunakan untuk memilih frame-frame yang menunjukkan perubahan 
posisi tangan atau ekspresi wajah yang signifikan. Seleksi ini bertujuan untuk mengurangi 
redundansi visual dan memastikan data yang digunakan merepresentasikan variasi gerakan 
secara optimal seperti pada Gambar 2. 
 

 
 

Gambar 2. Potongan Video Menjadi Image dengan Frame 
 
2.2  Persiapan Data dan Preprocessing Data 
 
Setelah diperoleh kumpulan citra statis, dilakukan tahap praproses yang dimulai dengan 
pengaturan struktur direktori data menggunakan 10 kata yang sudah dipilih. Setiap kelas kata 
dibuat dalam direktori terpisah untuk memudahkan proses loading dan pelabelan otomatis. 
Struktur organisasi data ini memungkinkan sistem untuk mengidentifikasi dan memuat gambar 
berdasarkan kelas yang sesuai dengan gestur bahasa isyarat yang direpresentasikan. 
 
Seluruh citra dinormalisasi ke resolusi 224×224 piksel agar sesuai dengan arsitektur model VGG 
yang akan digunakan. Untuk meningkatkan variabilitas dataset dan mencegah overfitting, 
diterapkan teknik augmentasi data yang meliputi random horizontal flip, random rotation, dan 
color jitter untuk memberikan variasi pada brightness, contrast, saturation, dan hue. Proses ini 
bertujuan untuk meningkatkan robustness model terhadap berbagai kondisi pencahayaan dan 
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orientasi gestur. Kemudian seluruh citra dikonversi ke format RGB dan ditransformasi menjadi 
tensor PyTorch, sebelum dinormalisasi menggunakan parameter standar ImageNet dengan nilai 
mean [0.485, 0.456, 0.406] dan standard deviation [0.229, 0.224, 0.225]. Normalisasi ini 
memungkinkan pemanfaatan transfer learning dari model yang telah dilatih pada dataset 
ImageNet. Dataset kemudian dibagi menjadi tiga bagian yaitu data latih, data validasi, dan data 
uji. 
 
2.3  Perancangan dan Pengembangan Model 
 
Model yang digunakan dalam penelitian ini adalah varian arsitektur VGG seperti VGG-11, VGG-
13, VGG-16, dan VGG-19. Arsitektur ini dipilih untuk mengetahui keandalan serta beban 
komputasi yang dibutuhkan dengan membandingkan keempat varian tersebut khususnya pada 
klasifikasi bahasa isyarat SIBI statis. Setiap varian akan dievaluasi dari segi efisiensi waktu 
pemrosesan dan metrik evaluasi untuk menentukan arsitektur yang paling optimal. Perbandingan 
spesifikasi keempat varian arsitektur VGG dapat dilihat pada Tabel 1. Perbedaan utama terletak 
pada jumlah lapisan konvolusi pada setiap blok, dimana VGG-11 memiliki struktur paling 
sederhana, sedangkan VGG-19 memiliki struktur paling kompleks dengan lapisan konvolusi 
terbanyak.  
 

Tabel 1. Varian Arsitektur VGG [18] 
 

VGG-11 VGG-13 VGG-16 VGG-19 

Conv3-64 
 
Maxpool 
Conv3-128 
 
Maxpool 
Conv3-256 
Conv3-256 
 
 
Maxpool 
Conv3-512 
Conv3-512 
 
 
Maxpool 
Conv3-512 
Conv3-512 
 
 
Maxpool 
FC-4096 
FC-4096 
FC-1000 
Soft-max 

Conv3-64 
Conv3-64 
Maxpool 
Conv3-128 
Conv3-128 
Maxpool 
Conv3-256 
Conv3-256 
 
 
Maxpool 
Conv3-512 
Conv3-512 
 
 
Maxpool 
Conv3-512 
Conv3-512 
 
 
Maxpool 
FC-4096 
FC-4096 
FC-1000 
Soft-max 

Conv3-64 
Conv3-64 
Maxpool 
Conv3-128 
Conv3-128 
Maxpool 
Conv3-256 
Conv3-256 
Conv3-256 
 
Maxpool 
Conv3-512 
Conv3-512 
Conv3-512 
 
Maxpool 
Conv3-512 
Conv3-512 
Conv3-512 
 
Maxpool 
FC-4096 
FC-4096 
FC-1000 
Soft-max 

Conv3-64 
Conv3-64 
Maxpool 
Conv3-128 
Conv3-128 
Maxpool 
Conv3-256 
Conv3-256 
Conv3-256 
Conv3-256 
Maxpool 
Conv3-512 
Conv3-512 
Conv3-512 
Conv3-512 
Maxpool 
Conv3-512 
Conv3-512 
Conv3-512 
Conv3-512 
Maxpool 
FC-4096 
FC-4096 
FC-1000 
Soft-max 

 
2.4  Pelatihan Model 
 
Proses pelatihan model dilakukan selama 25 epoch menggunakan algoritma Stochastic Gradient 
Descent (SGD) dengan momentum 0.9 dan fungsi kehilangan CrossEntropyLoss. Penyesuaian 
learning rate diatur menggunakan scheduler StepLR untuk mengoptimalkan proses konvergensi. 
Setiap epoch, model dievaluasi terhadap data validasi untuk memantau performa, dan model 
terbaik disimpan berdasarkan akurasi validasi tertinggi. Seluruh metrik seperti akurasi, loss, dan 
perubahan learning rate dicatat untuk analisis performa selama proses pelatihan berlangsung. 
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2.5  Evaluasi 
 
Evaluasi kinerja model dalam penelitian ini dilakukan secara komprehensif melalui implementasi 
beragam metrik evaluasi yang saling melengkapi untuk memberikan gambaran menyeluruh 
tentang kemampuan klasifikasi sistem. Metrik akurasi digunakan sebagai indikator global untuk 
mengukur proporsi prediksi yang benar terhadap total sampel, sementara precision dan recall 
dianalisis untuk memahami trade-off antara ketepatan prediksi positif dan kemampuan model 
dalam mendeteksi semua instance positif dari setiap kelas. F1-score diimplementasikan sebagai 
harmonic mean dari precision dan recall untuk memberikan ukuran seimbang yang 
mempertimbangkan kedua aspek tersebut, terutama penting dalam menangani dataset yang 
memiliki distribusi kelas tidak seimbang. Mean class accuracy dihitung untuk memastikan bahwa 
performa model tidak bias terhadap kelas mayoritas dan memberikan evaluasi yang adil untuk 
semua kategori. Selain metrik kuantitatif tersebut, confusion matrix dianalisis secara detail untuk 
mengidentifikasi pola spesifik kesalahan klasifikasi antarkelas, memungkinkan identifikasi kelas-
kelas yang sering mengalami misclassification dan memberikan insight tentang kesamaan fitur 
visual yang menyebabkan kebingungan model. Protokol evaluasi ini diterapkan secara konsisten 
pada keempat varian model yang dikembangkan, menghasilkan empat set evaluasi komprehensif 
yang memungkinkan perbandingan sistematis kinerja relatif dan identifikasi varian optimal untuk 
implementasi praktis. 
 
2.6  Fine Tuning dan Optimisasi 
 
Tahap fine tuning dilakukan dengan membekukan sebagian lapisan awal pada arsitektur VGG 
untuk mempertahankan fitur dasar, sementara lapisan atas dilatih ulang agar lebih adaptif 
terhadap karakteristik data SIBI. Proses ini menggunakan algoritma optimisasi Adam dengan 
learning rate yang disesuaikan secara bertahap menggunakan Cosine Annealing Scheduler 
selama 15 epoch. Selama pelatihan, model dipantau berdasarkan akurasi validasi, dan 
parameter terbaik disimpan untuk evaluasi akhir. Strategi ini memungkinkan model untuk 
mengenali variasi bentuk tangan dan ekspresi wajah secara lebih akurat sambil mempertahankan 
kemampuan generalisasi yang baik. 
 
3. Hasil dan Diskusi 
 
Bagian ini menyajikan hasil implementasi dan evaluasi model penerjemah bahasa isyarat SIBI 
statis menggunakan empat varian arsitektur VGG. Pembahasan dimulai dari implementasi 
sistem, analisis proses pelatihan, hingga perbandingan performa setiap arsitektur berdasarkan 
berbagai metrik evaluasi dan beban komputasi model. 
 
3.1. Implementasi Program 
 
Implementasi sistem dilakukan menggunakan framework PyTorch dengan Python3.8 melalui 
Google Colab dengan memanfaatkan GPU Tesla T4. Keempat varian arsitektur VGG 
diimplementasikan dengan perbedaan utama pada kedalaman convolutional layers, sementara 
struktur classifier tetap konsisten untuk memastikan fair comparison. Setiap model VGG terdiri 
dari dua komponen utama yaitu feature extraction layers (convolutional) dan classifier layers (fully 
connected). Perbedaan antar varian terletak pada jumlah convolutional layers dalam feature 
extraction, yang secara progresif meningkat dari VGG-11 hingga VGG-19. 
 
Tabel 2 sampai Tabel 5 menunjukani implementasi progression yang sistematis dalam 
kedalaman arsitektur yaitu, VGG-11 (8 conv layers), VGG-13 (10 conv layers), VGG-16 (13 conv 
layers), dan VGG-19 (16 conv layers), dimana setiap peningkatan kedalaman dirancang untuk 
meningkatkan representational capacity model. Untuk memastikan fair comparison, semua varian 
menggunakan classifier architecture yang identik dengan dua hidden layers (4096 neurons each) 
dan dropout rate 0.5, sehingga perbedaan performa yang dihasilkan murni berasal dari feature 
extraction capability yang berbeda. Final layer pada semua model disesuaikan untuk 
mengakomodasi 10 kelas SIBI (num_classes=10), menggantikan konfigurasi original ImageNet 
yang memiliki 1000 kelas. 
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Tabel 2. Implementasi Kode Program Model VGG-11 
 

class VGG11(nn.Module): 
    def __init__(self, num_classes=1000): 
        super().__init__() 
        self.features = nn.Sequential( 
            nn.Conv2d(3, 64, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
            nn.Conv2d(64, 128, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
            nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
            nn.Conv2d(256, 512, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2) 
        ) 
        self.classifier = nn.Sequential( 
            nn.AdaptiveAvgPool2d((7, 7)), nn.Flatten(), 
            nn.Linear(25088, 4096), nn.ReLU(), nn.Dropout(0.5), 
            nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5), 
            nn.Linear(4096, num_classes) 
        ) 
     
    def forward(self, x): 
        return self.classifier(self.features(x)) 

 
Tabel 3. Implementasi Kode Program Model VGG-13 

 

class VGG13(nn.Module): 
    def __init__(self, num_classes=1000): 
        super().__init__() 
        self.features = nn.Sequential( 
            nn.Conv2d(3, 64, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(64, 64, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
            nn.Conv2d(64, 128, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(128, 128, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
            nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
            nn.Conv2d(256, 512, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2) 
        ) 
        self.classifier = nn.Sequential( 
            nn.AdaptiveAvgPool2d((7, 7)), nn.Flatten(), 
            nn.Linear(25088, 4096), nn.ReLU(), nn.Dropout(0.5), 
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            nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5), 
            nn.Linear(4096, num_classes) 
        ) 
     
    def forward(self, x): 
        return self.classifier(self.features(x)) 

 
Tabel 4. Model VGG-16 

 

class VGG16(nn.Module): 
    def __init__(self, num_classes=1000): 
        super().__init__() 
        self.features = nn.Sequential( 
            nn.Conv2d(3, 64, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(64, 64, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
            nn.Conv2d(64, 128, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(128, 128, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
            nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
            nn.Conv2d(256, 512, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2) 
        ) 
        self.classifier = nn.Sequential( 
            nn.AdaptiveAvgPool2d((7, 7)), nn.Flatten(), 
            nn.Linear(25088, 4096), nn.ReLU(), nn.Dropout(0.5), 
            nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5), 
            nn.Linear(4096, num_classes) 
        ) 
     
    def forward(self, x): 
        return self.classifier(self.features(x)) 

 
Tabel 5. Model VGG-19 

 

class VGG19(nn.Module): 
    def __init__(self, num_classes=1000): 
        super().__init__() 
        self.features = nn.Sequential( 
            nn.Conv2d(3, 64, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(64, 64, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
            nn.Conv2d(64, 128, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(128, 128, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
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            nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
            nn.Conv2d(256, 512, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(), 
            nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),  
            nn.MaxPool2d(2) 
        ) 
        self.classifier = nn.Sequential( 
            nn.AdaptiveAvgPool2d((7, 7)), nn.Flatten(), 
            nn.Linear(25088, 4096), nn.ReLU(), nn.Dropout(0.5), 
            nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5), 
            nn.Linear(4096, num_classes) 
        ) 
     
    def forward(self, x): 
        return self.classifier(self.features(x)) 

 
3.2. Hasil Pelatihan Model 
 
Eksperimen pelatihan dilakukan dengan protokol standar 25 epoch untuk seluruh varian arsitektur 
VGG, dengan pemantauan berkelanjutan terhadap perkembangan akurasi dan fungsi loss 
sebagaimana ditampilkan pada Gambar 3. Analisis kurva pembelajaran menunjukkan pola 
konvergensi yang berbeda-beda antar varian, mengindikasikan bahwa kedalaman arsitektur 
memiliki pengaruh signifikan terhadap dinamika pembelajaran dan kemampuan generalisasi 
model. Hasil observasi empiris menunjukkan bahwa peningkatan kompleksitas arsitektur dari 
VGG-11 hingga VGG-16 menghasilkan perbaikan progresif dalam performa validasi, dengan 
akurasi pelatihan yang meningkat secara konsisten dari 74.33% (VGG-11) menjadi 78.07% 
(VGG-16), disertai penurunan substansial dalam validation loss dari 0.6079 menjadi 0.5041. Tren 
ini mengkonfirmasi ekspektasi teoritis bahwa peningkatan kedalaman jaringan dapat 
meningkatkan kapasitas representasi fitur hingga mencapai titik optimal tertentu. 
 
VGG-16 mendemonstrasikan performa paling seimbang dengan mencapai akurasi pelatihan 
78.07% dan akurasi validasi 81.14%, mengindikasikan keseimbangan optimal antara 
kompleksitas model dan kemampuan generalisasi untuk dataset SIBI statis yang digunakan. 
Sebaliknya, VGG-19 menunjukkan fenomena menarik dimana akurasi pelatihan menurun 
menjadi 76.61% namun akurasi validasi mencapai nilai tertinggi 82.29%, menunjukkan tanda-
tanda awal perilaku overfitting dimana model yang terlalu kompleks mulai menghafal pola 
pelatihan daripada mempelajari fitur yang dapat digeneralisasi. Perbedaan antara metrik 
pelatihan dan validasi pada VGG-19 mengkonfirmasi bahwa kompleksitas arsitektur yang 
berlebihan dapat menjadi kontraproduktif untuk dataset dengan keragaman terbatas, dimana 
jaringan yang lebih sederhana dengan regularisasi yang tepat dapat mencapai performa 
generalisasi yang superior. Temuan ini memberikan wawasan penting tentang kriteria pemilihan 
arsitektur untuk aplikasi domain spesifik dalam tugas computer vision. 
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(d) 

 
Gambar 3. Hasil Perbandingan Akurasi dan Loss Setiap Model (a) VGG-11, (b) VGG-13, (c) 

VGG-16, (d) VGG-19 
 
3.3. Evaluasi Performa Arsitektur VGG 
 

a. Metrik Evaluasi Komprehensif 
 
 Tabel 6 menampilkan perbandingan metrik evaluasi untuk keempat varian arsitektur VGG 

pada dataset testing: 
 

Tabel 6. Perbandingan Metrik Evaluasi Arsitektur VGG 
 

Arsitektur Akurasi (%) Precision (%) Recall (%) F1-Score (%) 

VGG-11 79.7 80.5 79.7 79.3 

VGG-13 80.6 82.4 80.6 79.7 

VGG-16 83.4 85.2 83.4 82.9 

VGG-19 82.0 82.9 82.0 81.6 

 
 VGG-16 menunjukkan performa terbaik di semua metrik evaluasi, dengan akurasi 

mencapai 92.86%. Peningkatan performa yang signifikan terlihat dari VGG-11 ke VGG-16, 
namun VGG-19 mengalami sedikit penurunan dibandingkan VGG-16, yang 
mengindikasikan adanya diminishing returns pada arsitektur yang terlalu dalam untuk 
dataset ini. 

 
b. Analisis Confusion Matrix 
 

Confusion matrix memberikan insight mendalam tentang performa klasifikasi setiap model 
untuk 10 kelas kata SIBI yang dapat dilihat pada Gambar 4-7. 
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(a) (b) 

 

  

(c) (d) 

 
Gambar 4. Confusion Matrix (a) VGG-11, (b) VGG-13, (c) VGG-16, (d) VGG-19 

 
Confusion matrix memberikan gambaran yang jelas tentang bagaimana setiap model 
mengenali 10 kelas kata SIBI, sebagaimana terlihat pada Gambar 4 hingga Gambar 7. Hal 
menarik adalah adanya pola kesalahan yang konsisten di semua arsitektur. Kata "ajak" 
ternyata menjadi tantangan terbesar bagi semua model, dengan tingkat keberhasilan 
hanya berkisar 37-48% karena sering keliru dikenali sebagai "kakak" (15-18 kasus 
kesalahan di setiap model). Di sisi lain, kata-kata seperti "kakak", "kamu", dan "tugas" 
cenderung mudah dikenali dengan akurasi di atas 90%. Hal yang juga menarik perhatian 
adalah kesalahan konsisten dalam mengenali "ibu" yang sering dikira "bapak" (6-7 kasus 
di semua model), menunjukkan bahwa gerakan isyarat untuk anggota keluarga memang 
memiliki kemiripan yang membingungkan. 

 
Ketika melihat perkembangan dari model sederhana ke kompleks, terlihat cerita yang 
menarik. VGG-11 memberikan fondasi dasar dengan rentang akurasi 43-94%, lalu VGG-
13 menunjukkan peningkatan pada beberapa kata seperti "tugas" yang mencapai 97%, 
meski "ajak" justru makin sulit dikenali (turun ke 37%). VGG-16 berhasil menemukan 
keseimbangan terbaik dengan pemulihan signifikan pada "buku" dan "kamu" yang 
mencapai 97%, plus sedikit perbaikan pada "ajak" menjadi 46%. Sementara VGG-19, 
meski lebih kompleks, memberikan hasil yang campur aduk, ada perbaikan pada "ajak" 
(49%) dan "saya" (80%), namun tidak konsisten di setiap kelas yang ada. Dari sini terlihat 
bahwa VGG-16 memberikan performa paling seimbang untuk dataset ini. Fenomena ini 
mengkonfirmasi prinsip bias-variance trade-off dimana model dengan kompleksitas 
optimal dapat mencapai generalisasi terbaik tanpa mengalami underfitting maupun 
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overfitting yang ekstrem. 
 
3.4. Analisis Kompleksitas Komputasi 
 
Selain mengevaluasi akurasi model, penting untuk menganalisis kompleksitas komputasi yang 
diperlukan oleh setiap arsitektur. Analisis ini memberikan perspektif tentang trade-off antara 
performa akurasi dan efisiensi resource, yang menjadi pertimbangan krusial dalam implementasi 
praktis sistem pengenalan bahasa isyarat SIBI. 
 

a. Perbandingan GFLOPs dan Parameter Model 
 
 Analisis kompleksitas komputasi menggunakan metrik GFLOPs memberikan gambaran 

tentang beban komputasi yang diperlukan setiap arsitektur untuk melakukan inferensi pada 
input image 224×224 piksel. Perhitungan Efficiency Score diperoleh dari akurasi dibagi 
GFLOPs, dimana nilai yang lebih tinggi mengindikasikan efisiensi komputasional yang 
lebih baik. Hasil perbandingan dapat dilihat pada Tabel 7. 

 
Tabel 7. GPLOPs setiap Model Serta Tingat Efisensi Arsitektur VGG 

 

Arsitektur GFLOPs Parameters(M) Model Size Akurasi Test (%) Efisiensi Score 

VGG-11 7.62 132.86 506.8 79.7 10.46 

VGG-13 11.32 128.99 492.1 80.6 7.12 

VGG-16 15.48 134.30 512.3 83.4 5.39 

VGG-19 19.64 139.61 532.6 82.0 4.18 

 
 

b. Trade-off Antara Kompleksitas dan Performa 
 
 Hasil analisis menunjukkan adanya pola yang jelas dalam hubungan antara kompleksitas 

komputasi dan akurasi model. VGG-11 memberikan efisiensi tertinggi dengan skor 10.46, 
mencapai akurasi 79.7% dengan beban komputasi terendah (7.62 GFLOPs). Hal ini 
menunjukkan bahwa arsitektur sederhana dapat memberikan nilai efisiensi yang optimal 
untuk aplikasi dengan keterbatasan resource. 

 
 Seiring peningkatan kedalaman arsitektur, terjadi kenaikan GFLOPs yang signifikan: VGG-

13 memerlukan 11.32 GFLOPs (peningkatan 48.6%), VGG-16 membutuhkan 15.48 
GFLOPs (peningkatan 36.7% dari VGG-13), hingga VGG-19 yang mencapai 19.64 
GFLOPs (peningkatan 26.9% dari VGG-16). Namun, peningkatan akurasi tidak sebanding 
dengan peningkatan kompleksitas komputasi yang terjadi. 

 
 VGG-16 mencapai performa akurasi terbaik (83.4%) dengan efisiensi score 5.39, 

menunjukkan keseimbangan yang masih dapat diterima antara akurasi dan kompleksitas. 
Sebaliknya, VGG-19 mengalami fenomena diminishing returns, dimana peningkatan 
kompleksitas 26.9% justru menghasilkan penurunan akurasi menjadi 82.0%, sehingga 
efisiensi score turun menjadi 4.18. Fenomena ini mengkonfirmasi bahwa arsitektur yang 
terlalu kompleks tidak selalu memberikan hasil yang lebih baik. 

 
c. Distribusi Beban Komputasi dalam Arsitektur 
 
 Analisis breakdown GFLOPs mengungkap pola yang konsisten di semua arsitektur, 

dimana 98-99% komputasi terjadi pada feature extraction layers (convolutional layers), 
sementara classifier layers (fully connected) hanya berkontribusi 0.6-1.6% dari total beban 
komputasi. VGG-11 menunjukkan distribusi 7.49 GFLOPs (98.4%) untuk convolution dan 
0.12 GFLOPs (1.6%) untuk fully connected layers. Pattern serupa berlanjut hingga VGG-
19 dengan 19.52 GFLOPs (99.4%) dan 0.12 GFLOPs (0.6%) masing-masing. 
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Penelitian ini memiliki implikasi penting untuk optimasi performa, dimana fokus 
pengembangan dan perbaikan efisiensi harus diarahkan pada convolutional layers rather 
than classifier layers. Konsistensi pattern ini across all architectures menunjukkan bahwa 
karakteristik ini merupakan sifat intrinsik dari arsitektur VGG. 

 
4. Kesimpulan 
 
Penelitian ini berhasil mengidentifikasi VGG-16 sebagai arsitektur optimal untuk klasifikasi 
bahasa isyarat SIBI statis melalui evaluasi komprehensif terhadap empat varian arsitektur VGG. 
VGG-16 menunjukkan performa superior dengan akurasi 83.4%, precision 85.2%, recall 83.4%, 
dan F1-score 82.9%, mencapai keseimbangan ideal antara kompleksitas model dan kemampuan 
generalisasi. Fenomena diminishing returns terkonfirmasi pada VGG-19 yang justru mengalami 
penurunan performa menjadi 82.0% meskipun memiliki arsitektur lebih kompleks, membuktikan 
bahwa peningkatan kedalaman layer tidak selalu berkorelasi positif dengan peningkatan akurasi. 
Analisis trade-off kompleksitas komputasi menunjukkan bahwa meskipun VGG-11 memiliki 
efisiensi tertinggi (10.46 GFLOPs), VGG-16 tetap memberikan nilai optimal dengan 
mempertimbangkan kebutuhan akurasi tinggi untuk aplikasi praktis. 
 
Hasil di dapat memberikan kontribusi signifikan dalam mengatasi gap penelitian sebelumnya dan 
menyediakan foundation solid untuk pengembangan teknologi assistive bagi komunitas 
tunarungu di Indonesia. Identifikasi tantangan spesifik seperti kesulitan membedakan gestur 
serupa ("ajak" vs "kakak", "ibu" vs "bapak") memberikan valuable insight untuk perbaikan dataset 
dan metodologi di masa depan. Hasil penelitian ini secara langsung mendukung pengembangan 
sistem penerjemah bahasa isyarat SIBI yang lebih efektif dan efisien, berkontribusi dalam 
menjembatani kesenjangan komunikasi antara penyandang tunarungu dengan masyarakat 
umum, sekaligus memajukan implementasi teknologi computer vision untuk aplikasi sosial yang 
bermakna. 
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