
JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

189

Model Penerjemah Bahasa Isyarat SIBI Statis Berbasis
Convolutional Neural Network

Ni Made Wipra Ranum Ratnayua1, I Dewa Made Bayu Atmaja Darmawana2,

I Putu Gede Hendra Suputraa3

aProgram Studi Informatika, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Universitas Udayana
Jalan Raya Kampus Udayana, Bukit Jimbaran, Kuta Selatan, Badung, Bali, Indonesia

1ratnayu.2208561042@student.unud.ac.id
2dewabayu@unud.ac.id

3dhendra.suputra@unud.ac.id

Abstract

This study addresses the communication gap between deaf and hearing communities by
developing an optimal sign language recognition system for Indonesian Sign Language System
(SIBI) static gestures. A comprehensive comparative analysis was conducted on four VGG
architecture variants (VGG-11, VGG-13, VGG-16, and VGG-19) using a dataset across 10 SIBI
word classes. The research employed systematic methodology including data extraction from
video sources, preprocessing with augmentation techniques, model training over 25 epochs, and
comprehensive evaluation using accuracy, precision, recall, and F1-score metrics. Results
demonstrate that VGG-16 achieves superior performance with 83.4% accuracy, 85.2% precision,
83.4% recall, and 82.9% F1-score, establishing optimal balance between model complexity and
generalization capability. The study reveals diminishing returns phenomenon in VGG-19 despite
increased architectural complexity. Computational efficiency analysis shows VGG-11 provides
highest efficiency score (10.46 GFLOPs) while VGG-16 maintains optimal accuracy-efficiency
trade-off. These findings provide crucial insights for developing effective assistive technology
solutions that bridge communication barriers for the Indonesian deaf community.

Keywords: sign language recognition, convolutional neural network, VGG architecture, SIBI
classification, computer vision, assistive technology

1. Pendahuluan

Komunikasi merupakan kebutuhan dasar manusia dalam berinteraksi dan menyampaikan
informasi[1], [2], [3]. Bagi penyandang tunarungu dan tunawicara, komunikasi dilakukan melalui
bahasa isyarat[4] yang merupakan bahasa visual gestural menggunakan gerakan tangan,
ekspresi wajah, dan postur tubuh[5]. Di Indonesia, Sistem Isyarat Bahasa Indonesia (SIBI) telah
ditetapkan sebagai salah satu bahasa isyarat resmi yang digunakan dalam komunikasi formal[6],
khususnya dalam lingkungan pendidikan dan pelayanan publik. Namun dalam praktiknya, bagi
penyandang tunarungu komunikasi perlu difasilitasi dengan bahasa khusus yang sesuai untuk
kebutuhan sehari-hari agar dapat berkomunikasi dan memahami komunikasi[7]. Namun masalah
utama yang dihadapi adalah adanya kesenjangan komunikasi antara penyandang tunarungu
dengan masyarakat umum yang tidak memahami bahasa isyarat, sehingga diperlukan solusi
teknologi yang dapat menjembatani kesenjangan komunikasi ini[8].

Perkembangan teknologi kecerdasan buatan seperti pada computer vision telah membuka
peluang besar untuk pengembangan bahasa isyarat[9]. Peneliti sebelumnya sudah pernah
melakukan penelitian tentang Bahasa Isyarat Indonesia (BISINDO) statis menggunakan
Convolutional Neural Network (CNN) telah terbukti sebagai metode yang efektif untuk klasifikasi
citra, termasuk dalam pengenalan bahasa isyarat[3]. Seperti yang dikemukakan oleh Sholawati
dkk, "Convolutional Neural Network merupakan salah satu jenis algoritma neural network yang
didesain untuk memproses data citra"[6].

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

190

Implementasi arsitektur CNN sebagai pengenalan bahasa isyarat SIBI telah menunjukkan hasil
yang menjanjikan dalam beberapa penelitian terdahulu. Rivan & Hartoyo berhasil
mengembangkan sistem klasifikasi isyarat bahasa Indonesia menggunakan arsitektur VGG-16
dan AlexNet dengan tingkat akurasi yang tertinggi mencapai 99,32% pada setiap huruf
menggunakan VGG-16 dengan optimizer Adam[10]. Demikian pula, penelitian oleh Sholawati dkk
yang mengembangkan aplikasi pengenalan bahasa isyarat abjad SIBI berbasis web
menggunakan CNN mencapai akurasi sebesar 80,76%[6]. Siddik juga melakukan perbandingan
antara VGG-16 dan ResNet-50 untuk klasifikasi hand sign language digits dan menemukan
bahwa VGG-16 memberikan hasil terbaik dengan akurasi sebesar 97,29%, presisi sebesar
97,38%, recall sebesar 97,45%, dan F1 score sebesar 97,36%[11]. Meski menunjukkan hasil
positif, penelitian-penelitian sebelumnya memiliki beberapa keterbatasan. Sebagian besar
penelitian berfokus pada pengenalan gestur dinamis atau real-time yang memerlukan komputasi
yang besar, sedangkan pengenalan bahasa isyarat statis masih memerlukan eksplorasi lebih
lanjut. Sebagaimana dikemukakan oleh Giamiko & Tjiong, pemilihan arsitektur yang tepat dan
dataset yang sesuai dapat membantu menghasilkan model klasifikasi yang lebih akurat[12].

Pada penelitian sebelumnya menyatakan bahwa arsitektur VGG mendapat hasil akurasi yang
optimal untuk menangatasi masalah klasifikasi maupun deteksi[13], [14]. Secara lebih spesifik,
VGG-16 mengungguli varian lain dari segi hasil yang diharapkan dibanding arsitektur VGG
lainnya[11], [15], [16]. Untuk memastikan hal tersebut, peneliti ingin membandingkan berbagai
varian arsitektur VGG khususnya dalam pengenalan bahasa isyarat SIBI statis. Penelitian ini
bertujuan untuk mengembangkan model terbaik penerjemah bahasa isyarat SIBI statis dengan
membandingkan performa berbagai arsitektur VGG (VGG-11, VGG-13, VGG-16, dan VGG-19).
Melalui evaluasi komprehensif terhadap keempat varian arsitektur tersebut, penelitian ini
diharapkan dapat memberikan kontribusi dalam menentukan arsitektur VGG yang paling optimal
untuk klasifikasi bahasa isyarat SIBI statis dan mengetahui beban komputasi dari setiap arsitektur
menggunakan Giga Floating Point Operations (GFLOPs), sehingga dapat mendukung
pengembangan teknologi assistive yang lebih baik bagi komunitas tunarungu di Indonesia.

2. Metode Penelitian

Penelitian ini mengadopsi pendekatan eksperimental dengan tahapan terstruktur yang meliputi
akuisisi dan ekstraksi data, persiapan dan preprocessing data, perancangan model, pelatihan
model, evaluasi model, fine tuning, hingga implementasi sistem dengan prediksi. Setiap tahap
dirancang secara sistematis untuk memastikan validitas data dan reliabilitas model dalam
melakukan klasifikasi isyarat statis SIBI. Diagram alur keseluruhan proses dapat dilihat pada
Gambar 1 yang menggambarkan seluruh alur proses penelitian.

Gambar 1. Alur Proses Penelitian

2.1 Akuisisi dan Ekstraksi Data

Dataset yang digunakan diperoleh dari Indonesian Sign Language System (SIBI) Dataset:
Sentences Enhanced by Diverse Facial Expressions for Total Communication[17]. Dataset
tersebut terdiri atas video beresolusi tinggi (1280×720 piksel) dengan 30 frame per detik, yang
mencakup kalimat beranotasi dalam SIBI serta tujuh jenis ekspresi wajah berbeda. Dari kumpulan
video tersebut, dipilih 10 video yang berisi kata sederhana, yaitu: ajak, aku, bapak, buku, dia, ibu,
kakak, kamu, saya, dan tugas. Kata-kata yang dipilih merupakan kata yang paling sering

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

191

digunakan dan umum serta banyak digunakan. Dari kumpulan video kata tersebut kemudian
dibagi menjadi beberapa frame sesuai panjang video lalu diambil 6 frame yang memiliki
perbedaan visual. Kemudian frame yang dipilih akan disimpan sebagai dataset statis. Total frame
yang dijadikan image untuk dataset statis berjumlah 4250 data untuk pelatihan, 350 data untuk
validasi, dan 350 data untuk testing. Masing-masing 425 data perkata untuk data latih, 35 data
per kata untuk validasi, dan 35 data perkata untuk testing.

Ekstraksi video menjadi kumpulan citra statis dilakukan melalui proses key-frame selection
berbasis perhitungan perbedaan visual antar frame. Metode structural similarity index (SSIM) dan
color histogram difference digunakan untuk memilih frame-frame yang menunjukkan perubahan
posisi tangan atau ekspresi wajah yang signifikan. Seleksi ini bertujuan untuk mengurangi
redundansi visual dan memastikan data yang digunakan merepresentasikan variasi gerakan
secara optimal seperti pada Gambar 2.

Gambar 2. Potongan Video Menjadi Image dengan Frame

2.2 Persiapan Data dan Preprocessing Data

Setelah diperoleh kumpulan citra statis, dilakukan tahap praproses yang dimulai dengan
pengaturan struktur direktori data menggunakan 10 kata yang sudah dipilih. Setiap kelas kata
dibuat dalam direktori terpisah untuk memudahkan proses loading dan pelabelan otomatis.
Struktur organisasi data ini memungkinkan sistem untuk mengidentifikasi dan memuat gambar
berdasarkan kelas yang sesuai dengan gestur bahasa isyarat yang direpresentasikan.

Seluruh citra dinormalisasi ke resolusi 224×224 piksel agar sesuai dengan arsitektur model VGG
yang akan digunakan. Untuk meningkatkan variabilitas dataset dan mencegah overfitting,
diterapkan teknik augmentasi data yang meliputi random horizontal flip, random rotation, dan
color jitter untuk memberikan variasi pada brightness, contrast, saturation, dan hue. Proses ini
bertujuan untuk meningkatkan robustness model terhadap berbagai kondisi pencahayaan dan

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

192

orientasi gestur. Kemudian seluruh citra dikonversi ke format RGB dan ditransformasi menjadi
tensor PyTorch, sebelum dinormalisasi menggunakan parameter standar ImageNet dengan nilai
mean [0.485, 0.456, 0.406] dan standard deviation [0.229, 0.224, 0.225]. Normalisasi ini
memungkinkan pemanfaatan transfer learning dari model yang telah dilatih pada dataset
ImageNet. Dataset kemudian dibagi menjadi tiga bagian yaitu data latih, data validasi, dan data
uji.

2.3 Perancangan dan Pengembangan Model

Model yang digunakan dalam penelitian ini adalah varian arsitektur VGG seperti VGG-11, VGG-
13, VGG-16, dan VGG-19. Arsitektur ini dipilih untuk mengetahui keandalan serta beban
komputasi yang dibutuhkan dengan membandingkan keempat varian tersebut khususnya pada
klasifikasi bahasa isyarat SIBI statis. Setiap varian akan dievaluasi dari segi efisiensi waktu
pemrosesan dan metrik evaluasi untuk menentukan arsitektur yang paling optimal. Perbandingan
spesifikasi keempat varian arsitektur VGG dapat dilihat pada Tabel 1. Perbedaan utama terletak
pada jumlah lapisan konvolusi pada setiap blok, dimana VGG-11 memiliki struktur paling
sederhana, sedangkan VGG-19 memiliki struktur paling kompleks dengan lapisan konvolusi
terbanyak.

Tabel 1. Varian Arsitektur VGG [18]

VGG-11 VGG-13 VGG-16 VGG-19

Conv3-64

Maxpool
Conv3-128

Maxpool
Conv3-256
Conv3-256

Maxpool
Conv3-512
Conv3-512

Maxpool
Conv3-512
Conv3-512

Maxpool
FC-4096
FC-4096
FC-1000
Soft-max

Conv3-64
Conv3-64
Maxpool
Conv3-128
Conv3-128
Maxpool
Conv3-256
Conv3-256

Maxpool
Conv3-512
Conv3-512

Maxpool
Conv3-512
Conv3-512

Maxpool
FC-4096
FC-4096
FC-1000
Soft-max

Conv3-64
Conv3-64
Maxpool
Conv3-128
Conv3-128
Maxpool
Conv3-256
Conv3-256
Conv3-256

Maxpool
Conv3-512
Conv3-512
Conv3-512

Maxpool
Conv3-512
Conv3-512
Conv3-512

Maxpool
FC-4096
FC-4096
FC-1000
Soft-max

Conv3-64
Conv3-64
Maxpool
Conv3-128
Conv3-128
Maxpool
Conv3-256
Conv3-256
Conv3-256
Conv3-256
Maxpool
Conv3-512
Conv3-512
Conv3-512
Conv3-512
Maxpool
Conv3-512
Conv3-512
Conv3-512
Conv3-512
Maxpool
FC-4096
FC-4096
FC-1000
Soft-max

2.4 Pelatihan Model

Proses pelatihan model dilakukan selama 25 epoch menggunakan algoritma Stochastic Gradient
Descent (SGD) dengan momentum 0.9 dan fungsi kehilangan CrossEntropyLoss. Penyesuaian
learning rate diatur menggunakan scheduler StepLR untuk mengoptimalkan proses konvergensi.
Setiap epoch, model dievaluasi terhadap data validasi untuk memantau performa, dan model
terbaik disimpan berdasarkan akurasi validasi tertinggi. Seluruh metrik seperti akurasi, loss, dan
perubahan learning rate dicatat untuk analisis performa selama proses pelatihan berlangsung.

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

193

2.5 Evaluasi

Evaluasi kinerja model dalam penelitian ini dilakukan secara komprehensif melalui implementasi
beragam metrik evaluasi yang saling melengkapi untuk memberikan gambaran menyeluruh
tentang kemampuan klasifikasi sistem. Metrik akurasi digunakan sebagai indikator global untuk
mengukur proporsi prediksi yang benar terhadap total sampel, sementara precision dan recall
dianalisis untuk memahami trade-off antara ketepatan prediksi positif dan kemampuan model
dalam mendeteksi semua instance positif dari setiap kelas. F1-score diimplementasikan sebagai
harmonic mean dari precision dan recall untuk memberikan ukuran seimbang yang
mempertimbangkan kedua aspek tersebut, terutama penting dalam menangani dataset yang
memiliki distribusi kelas tidak seimbang. Mean class accuracy dihitung untuk memastikan bahwa
performa model tidak bias terhadap kelas mayoritas dan memberikan evaluasi yang adil untuk
semua kategori. Selain metrik kuantitatif tersebut, confusion matrix dianalisis secara detail untuk
mengidentifikasi pola spesifik kesalahan klasifikasi antarkelas, memungkinkan identifikasi kelas-
kelas yang sering mengalami misclassification dan memberikan insight tentang kesamaan fitur
visual yang menyebabkan kebingungan model. Protokol evaluasi ini diterapkan secara konsisten
pada keempat varian model yang dikembangkan, menghasilkan empat set evaluasi komprehensif
yang memungkinkan perbandingan sistematis kinerja relatif dan identifikasi varian optimal untuk
implementasi praktis.

2.6 Fine Tuning dan Optimisasi

Tahap fine tuning dilakukan dengan membekukan sebagian lapisan awal pada arsitektur VGG
untuk mempertahankan fitur dasar, sementara lapisan atas dilatih ulang agar lebih adaptif
terhadap karakteristik data SIBI. Proses ini menggunakan algoritma optimisasi Adam dengan
learning rate yang disesuaikan secara bertahap menggunakan Cosine Annealing Scheduler
selama 15 epoch. Selama pelatihan, model dipantau berdasarkan akurasi validasi, dan
parameter terbaik disimpan untuk evaluasi akhir. Strategi ini memungkinkan model untuk
mengenali variasi bentuk tangan dan ekspresi wajah secara lebih akurat sambil mempertahankan
kemampuan generalisasi yang baik.

3. Hasil dan Diskusi

Bagian ini menyajikan hasil implementasi dan evaluasi model penerjemah bahasa isyarat SIBI
statis menggunakan empat varian arsitektur VGG. Pembahasan dimulai dari implementasi
sistem, analisis proses pelatihan, hingga perbandingan performa setiap arsitektur berdasarkan
berbagai metrik evaluasi dan beban komputasi model.

3.1. Implementasi Program

Implementasi sistem dilakukan menggunakan framework PyTorch dengan Python3.8 melalui
Google Colab dengan memanfaatkan GPU Tesla T4. Keempat varian arsitektur VGG
diimplementasikan dengan perbedaan utama pada kedalaman convolutional layers, sementara
struktur classifier tetap konsisten untuk memastikan fair comparison. Setiap model VGG terdiri
dari dua komponen utama yaitu feature extraction layers (convolutional) dan classifier layers (fully
connected). Perbedaan antar varian terletak pada jumlah convolutional layers dalam feature
extraction, yang secara progresif meningkat dari VGG-11 hingga VGG-19.

Tabel 2 sampai Tabel 5 menunjukani implementasi progression yang sistematis dalam
kedalaman arsitektur yaitu, VGG-11 (8 conv layers), VGG-13 (10 conv layers), VGG-16 (13 conv
layers), dan VGG-19 (16 conv layers), dimana setiap peningkatan kedalaman dirancang untuk
meningkatkan representational capacity model. Untuk memastikan fair comparison, semua varian
menggunakan classifier architecture yang identik dengan dua hidden layers (4096 neurons each)
dan dropout rate 0.5, sehingga perbedaan performa yang dihasilkan murni berasal dari feature
extraction capability yang berbeda. Final layer pada semua model disesuaikan untuk
mengakomodasi 10 kelas SIBI (num_classes=10), menggantikan konfigurasi original ImageNet
yang memiliki 1000 kelas.

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

194

Tabel 2. Implementasi Kode Program Model VGG-11

class VGG11(nn.Module):
 def __init__(self, num_classes=1000):
 super().__init__()
 self.features = nn.Sequential(
 nn.Conv2d(3, 64, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(64, 128, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(),
 nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(256, 512, 3, padding=1), nn.ReLU(),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2)
)
 self.classifier = nn.Sequential(
 nn.AdaptiveAvgPool2d((7, 7)), nn.Flatten(),
 nn.Linear(25088, 4096), nn.ReLU(), nn.Dropout(0.5),
 nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
 nn.Linear(4096, num_classes)
)

 def forward(self, x):
 return self.classifier(self.features(x))

Tabel 3. Implementasi Kode Program Model VGG-13

class VGG13(nn.Module):
 def __init__(self, num_classes=1000):
 super().__init__()
 self.features = nn.Sequential(
 nn.Conv2d(3, 64, 3, padding=1), nn.ReLU(),
 nn.Conv2d(64, 64, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(64, 128, 3, padding=1), nn.ReLU(),
 nn.Conv2d(128, 128, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(),
 nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(256, 512, 3, padding=1), nn.ReLU(),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2)
)
 self.classifier = nn.Sequential(
 nn.AdaptiveAvgPool2d((7, 7)), nn.Flatten(),
 nn.Linear(25088, 4096), nn.ReLU(), nn.Dropout(0.5),

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

195

 nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
 nn.Linear(4096, num_classes)
)

 def forward(self, x):
 return self.classifier(self.features(x))

Tabel 4. Model VGG-16

class VGG16(nn.Module):
 def __init__(self, num_classes=1000):
 super().__init__()
 self.features = nn.Sequential(
 nn.Conv2d(3, 64, 3, padding=1), nn.ReLU(),
 nn.Conv2d(64, 64, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(64, 128, 3, padding=1), nn.ReLU(),
 nn.Conv2d(128, 128, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(),
 nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(),
 nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(256, 512, 3, padding=1), nn.ReLU(),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2)
)
 self.classifier = nn.Sequential(
 nn.AdaptiveAvgPool2d((7, 7)), nn.Flatten(),
 nn.Linear(25088, 4096), nn.ReLU(), nn.Dropout(0.5),
 nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
 nn.Linear(4096, num_classes)
)

 def forward(self, x):
 return self.classifier(self.features(x))

Tabel 5. Model VGG-19

class VGG19(nn.Module):
 def __init__(self, num_classes=1000):
 super().__init__()
 self.features = nn.Sequential(
 nn.Conv2d(3, 64, 3, padding=1), nn.ReLU(),
 nn.Conv2d(64, 64, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(64, 128, 3, padding=1), nn.ReLU(),
 nn.Conv2d(128, 128, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

196

 nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(),
 nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(),
 nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(),
 nn.Conv2d(256, 256, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(256, 512, 3, padding=1), nn.ReLU(),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.Conv2d(512, 512, 3, padding=1), nn.ReLU(),
 nn.MaxPool2d(2)
)
 self.classifier = nn.Sequential(
 nn.AdaptiveAvgPool2d((7, 7)), nn.Flatten(),
 nn.Linear(25088, 4096), nn.ReLU(), nn.Dropout(0.5),
 nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
 nn.Linear(4096, num_classes)
)

 def forward(self, x):
 return self.classifier(self.features(x))

3.2. Hasil Pelatihan Model

Eksperimen pelatihan dilakukan dengan protokol standar 25 epoch untuk seluruh varian arsitektur
VGG, dengan pemantauan berkelanjutan terhadap perkembangan akurasi dan fungsi loss
sebagaimana ditampilkan pada Gambar 3. Analisis kurva pembelajaran menunjukkan pola
konvergensi yang berbeda-beda antar varian, mengindikasikan bahwa kedalaman arsitektur
memiliki pengaruh signifikan terhadap dinamika pembelajaran dan kemampuan generalisasi
model. Hasil observasi empiris menunjukkan bahwa peningkatan kompleksitas arsitektur dari
VGG-11 hingga VGG-16 menghasilkan perbaikan progresif dalam performa validasi, dengan
akurasi pelatihan yang meningkat secara konsisten dari 74.33% (VGG-11) menjadi 78.07%
(VGG-16), disertai penurunan substansial dalam validation loss dari 0.6079 menjadi 0.5041. Tren
ini mengkonfirmasi ekspektasi teoritis bahwa peningkatan kedalaman jaringan dapat
meningkatkan kapasitas representasi fitur hingga mencapai titik optimal tertentu.

VGG-16 mendemonstrasikan performa paling seimbang dengan mencapai akurasi pelatihan
78.07% dan akurasi validasi 81.14%, mengindikasikan keseimbangan optimal antara
kompleksitas model dan kemampuan generalisasi untuk dataset SIBI statis yang digunakan.
Sebaliknya, VGG-19 menunjukkan fenomena menarik dimana akurasi pelatihan menurun
menjadi 76.61% namun akurasi validasi mencapai nilai tertinggi 82.29%, menunjukkan tanda-
tanda awal perilaku overfitting dimana model yang terlalu kompleks mulai menghafal pola
pelatihan daripada mempelajari fitur yang dapat digeneralisasi. Perbedaan antara metrik
pelatihan dan validasi pada VGG-19 mengkonfirmasi bahwa kompleksitas arsitektur yang
berlebihan dapat menjadi kontraproduktif untuk dataset dengan keragaman terbatas, dimana
jaringan yang lebih sederhana dengan regularisasi yang tepat dapat mencapai performa
generalisasi yang superior. Temuan ini memberikan wawasan penting tentang kriteria pemilihan
arsitektur untuk aplikasi domain spesifik dalam tugas computer vision.

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

197

(a)

(b)

(c)

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

198

(d)

Gambar 3. Hasil Perbandingan Akurasi dan Loss Setiap Model (a) VGG-11, (b) VGG-13, (c)

VGG-16, (d) VGG-19

3.3. Evaluasi Performa Arsitektur VGG

a. Metrik Evaluasi Komprehensif

 Tabel 6 menampilkan perbandingan metrik evaluasi untuk keempat varian arsitektur VGG

pada dataset testing:

Tabel 6. Perbandingan Metrik Evaluasi Arsitektur VGG

Arsitektur Akurasi (%) Precision (%) Recall (%) F1-Score (%)

VGG-11 79.7 80.5 79.7 79.3

VGG-13 80.6 82.4 80.6 79.7

VGG-16 83.4 85.2 83.4 82.9

VGG-19 82.0 82.9 82.0 81.6

 VGG-16 menunjukkan performa terbaik di semua metrik evaluasi, dengan akurasi

mencapai 92.86%. Peningkatan performa yang signifikan terlihat dari VGG-11 ke VGG-16,
namun VGG-19 mengalami sedikit penurunan dibandingkan VGG-16, yang
mengindikasikan adanya diminishing returns pada arsitektur yang terlalu dalam untuk
dataset ini.

b. Analisis Confusion Matrix

Confusion matrix memberikan insight mendalam tentang performa klasifikasi setiap model
untuk 10 kelas kata SIBI yang dapat dilihat pada Gambar 4-7.

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

199

(a) (b)

(c) (d)

Gambar 4. Confusion Matrix (a) VGG-11, (b) VGG-13, (c) VGG-16, (d) VGG-19

Confusion matrix memberikan gambaran yang jelas tentang bagaimana setiap model
mengenali 10 kelas kata SIBI, sebagaimana terlihat pada Gambar 4 hingga Gambar 7. Hal
menarik adalah adanya pola kesalahan yang konsisten di semua arsitektur. Kata "ajak"
ternyata menjadi tantangan terbesar bagi semua model, dengan tingkat keberhasilan
hanya berkisar 37-48% karena sering keliru dikenali sebagai "kakak" (15-18 kasus
kesalahan di setiap model). Di sisi lain, kata-kata seperti "kakak", "kamu", dan "tugas"
cenderung mudah dikenali dengan akurasi di atas 90%. Hal yang juga menarik perhatian
adalah kesalahan konsisten dalam mengenali "ibu" yang sering dikira "bapak" (6-7 kasus
di semua model), menunjukkan bahwa gerakan isyarat untuk anggota keluarga memang
memiliki kemiripan yang membingungkan.

Ketika melihat perkembangan dari model sederhana ke kompleks, terlihat cerita yang
menarik. VGG-11 memberikan fondasi dasar dengan rentang akurasi 43-94%, lalu VGG-
13 menunjukkan peningkatan pada beberapa kata seperti "tugas" yang mencapai 97%,
meski "ajak" justru makin sulit dikenali (turun ke 37%). VGG-16 berhasil menemukan
keseimbangan terbaik dengan pemulihan signifikan pada "buku" dan "kamu" yang
mencapai 97%, plus sedikit perbaikan pada "ajak" menjadi 46%. Sementara VGG-19,
meski lebih kompleks, memberikan hasil yang campur aduk, ada perbaikan pada "ajak"
(49%) dan "saya" (80%), namun tidak konsisten di setiap kelas yang ada. Dari sini terlihat
bahwa VGG-16 memberikan performa paling seimbang untuk dataset ini. Fenomena ini
mengkonfirmasi prinsip bias-variance trade-off dimana model dengan kompleksitas
optimal dapat mencapai generalisasi terbaik tanpa mengalami underfitting maupun

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

200

overfitting yang ekstrem.

3.4. Analisis Kompleksitas Komputasi

Selain mengevaluasi akurasi model, penting untuk menganalisis kompleksitas komputasi yang
diperlukan oleh setiap arsitektur. Analisis ini memberikan perspektif tentang trade-off antara
performa akurasi dan efisiensi resource, yang menjadi pertimbangan krusial dalam implementasi
praktis sistem pengenalan bahasa isyarat SIBI.

a. Perbandingan GFLOPs dan Parameter Model

 Analisis kompleksitas komputasi menggunakan metrik GFLOPs memberikan gambaran

tentang beban komputasi yang diperlukan setiap arsitektur untuk melakukan inferensi pada
input image 224×224 piksel. Perhitungan Efficiency Score diperoleh dari akurasi dibagi
GFLOPs, dimana nilai yang lebih tinggi mengindikasikan efisiensi komputasional yang
lebih baik. Hasil perbandingan dapat dilihat pada Tabel 7.

Tabel 7. GPLOPs setiap Model Serta Tingat Efisensi Arsitektur VGG

Arsitektur GFLOPs Parameters(M) Model Size Akurasi Test (%) Efisiensi Score

VGG-11 7.62 132.86 506.8 79.7 10.46

VGG-13 11.32 128.99 492.1 80.6 7.12

VGG-16 15.48 134.30 512.3 83.4 5.39

VGG-19 19.64 139.61 532.6 82.0 4.18

b. Trade-off Antara Kompleksitas dan Performa

 Hasil analisis menunjukkan adanya pola yang jelas dalam hubungan antara kompleksitas

komputasi dan akurasi model. VGG-11 memberikan efisiensi tertinggi dengan skor 10.46,
mencapai akurasi 79.7% dengan beban komputasi terendah (7.62 GFLOPs). Hal ini
menunjukkan bahwa arsitektur sederhana dapat memberikan nilai efisiensi yang optimal
untuk aplikasi dengan keterbatasan resource.

 Seiring peningkatan kedalaman arsitektur, terjadi kenaikan GFLOPs yang signifikan: VGG-

13 memerlukan 11.32 GFLOPs (peningkatan 48.6%), VGG-16 membutuhkan 15.48
GFLOPs (peningkatan 36.7% dari VGG-13), hingga VGG-19 yang mencapai 19.64
GFLOPs (peningkatan 26.9% dari VGG-16). Namun, peningkatan akurasi tidak sebanding
dengan peningkatan kompleksitas komputasi yang terjadi.

 VGG-16 mencapai performa akurasi terbaik (83.4%) dengan efisiensi score 5.39,

menunjukkan keseimbangan yang masih dapat diterima antara akurasi dan kompleksitas.
Sebaliknya, VGG-19 mengalami fenomena diminishing returns, dimana peningkatan
kompleksitas 26.9% justru menghasilkan penurunan akurasi menjadi 82.0%, sehingga
efisiensi score turun menjadi 4.18. Fenomena ini mengkonfirmasi bahwa arsitektur yang
terlalu kompleks tidak selalu memberikan hasil yang lebih baik.

c. Distribusi Beban Komputasi dalam Arsitektur

 Analisis breakdown GFLOPs mengungkap pola yang konsisten di semua arsitektur,

dimana 98-99% komputasi terjadi pada feature extraction layers (convolutional layers),
sementara classifier layers (fully connected) hanya berkontribusi 0.6-1.6% dari total beban
komputasi. VGG-11 menunjukkan distribusi 7.49 GFLOPs (98.4%) untuk convolution dan
0.12 GFLOPs (1.6%) untuk fully connected layers. Pattern serupa berlanjut hingga VGG-
19 dengan 19.52 GFLOPs (99.4%) dan 0.12 GFLOPs (0.6%) masing-masing.

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

201

Penelitian ini memiliki implikasi penting untuk optimasi performa, dimana fokus
pengembangan dan perbaikan efisiensi harus diarahkan pada convolutional layers rather
than classifier layers. Konsistensi pattern ini across all architectures menunjukkan bahwa
karakteristik ini merupakan sifat intrinsik dari arsitektur VGG.

4. Kesimpulan

Penelitian ini berhasil mengidentifikasi VGG-16 sebagai arsitektur optimal untuk klasifikasi
bahasa isyarat SIBI statis melalui evaluasi komprehensif terhadap empat varian arsitektur VGG.
VGG-16 menunjukkan performa superior dengan akurasi 83.4%, precision 85.2%, recall 83.4%,
dan F1-score 82.9%, mencapai keseimbangan ideal antara kompleksitas model dan kemampuan
generalisasi. Fenomena diminishing returns terkonfirmasi pada VGG-19 yang justru mengalami
penurunan performa menjadi 82.0% meskipun memiliki arsitektur lebih kompleks, membuktikan
bahwa peningkatan kedalaman layer tidak selalu berkorelasi positif dengan peningkatan akurasi.
Analisis trade-off kompleksitas komputasi menunjukkan bahwa meskipun VGG-11 memiliki
efisiensi tertinggi (10.46 GFLOPs), VGG-16 tetap memberikan nilai optimal dengan
mempertimbangkan kebutuhan akurasi tinggi untuk aplikasi praktis.

Hasil di dapat memberikan kontribusi signifikan dalam mengatasi gap penelitian sebelumnya dan
menyediakan foundation solid untuk pengembangan teknologi assistive bagi komunitas
tunarungu di Indonesia. Identifikasi tantangan spesifik seperti kesulitan membedakan gestur
serupa ("ajak" vs "kakak", "ibu" vs "bapak") memberikan valuable insight untuk perbaikan dataset
dan metodologi di masa depan. Hasil penelitian ini secara langsung mendukung pengembangan
sistem penerjemah bahasa isyarat SIBI yang lebih efektif dan efisien, berkontribusi dalam
menjembatani kesenjangan komunikasi antara penyandang tunarungu dengan masyarakat
umum, sekaligus memajukan implementasi teknologi computer vision untuk aplikasi sosial yang
bermakna.

Daftar Pustaka

[1] A. Alamsyah and D. A. Anggraeni, “Detection of Indonesian Sign Language System using

Convolutional Neural Network (CNN) with Nadam Optimizer,” 2024, pp. 352–359. doi:
10.2991/978-94-6463-589-8_32.

[2] I. A. Adeyanju, O. O. Bello, and M. A. Adegboye, “Machine learning methods for sign
language recognition: A critical review and analysis,” Nov. 01, 2021, Elsevier B.V. doi:
10.1016/j.iswa.2021.200056.

[3] E. Libra Kelana, M. Riko, A. Prasetya, and M. Zulfadhilah, “Integrating the CNN Model with
the Web for Indonesian Sign Language (BISINDO) Recognition,” 2025. [Online]. Available:
http://jurnal.polibatam.ac.id/index.php/JAIC

[4] A. C. R. Lorentzen, “Digital transformation as distributed leadership: Firing the change
agent,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 245–254. doi:
10.1016/j.procs.2021.12.011.

[5] P. W. Aditama, P. S. U. Putra, I. M. M. Yusa, and I. N. T. A. Putra, “Designing augmented
reality sibi sign language as a learning media,” in Journal of Physics: Conference Series,
IOP Publishing Ltd, Mar. 2021. doi: 10.1088/1742-6596/1810/1/012038.

[6] M. Sholawati, K. Auliasari, and F. X. Ariwibisono, “Pengembangan Aplikasi Pengenalan
Bahasa Isyarat Abjad Sibi Menggunakan Metode Convolutional Neural Network (CNN),”
2022.

[7] S. Syamsuddin, T. Pristiwaluyo, W. A Saleh, and Z. Zulfitrah, “Development of Indonesian
Sign Language System (SIBI) Dictionary Application for Students with Special Needs,” AL-
ISHLAH: Jurnal Pendidikan, vol. 15, no. 3, pp. 3132–3143, Sep. 2023, doi:
10.35445/alishlah.v15i3.3529.

[8] R. Rastgoo, K. Kiani, and S. Escalera, “Sign Language Recognition: A Deep Survey,” Feb.
01, 2021, Elsevier Ltd. doi: 10.1016/j.eswa.2020.113794.

[9] I. T. Ahmed, W. H. Gwad, B. T. Hammad, and E. Alkayal, “Enhancing Hand Gesture Image
Recognition by Integrating Various Feature Groups,” Technologies (Basel), vol. 13, no. 4,
Apr. 2025, doi: 10.3390/technologies13040164.

JNATIA Volume 4, Nomor 1, November 2025 p-ISSN: 2986-3929
Jurnal Nasional Teknologi Informasi dan Aplikasinya e-ISSN: 3032-1948

202

[10] M. E. Al Rivan and S. Hartoyo, “Klasifikasi Isyarat Bahasa Indonesia Menggunakan Metode
Convolutional Neural Network,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no.
2, Aug. 2022, doi: 10.28932/jutisi.v8i2.4863.

[11] A. Muh. A. Siddik, “Comparison of Transfer Learning Algorithm Performance in Hand Sign
Language Digits Image Classification,” Jurnal Matematika, Statistika dan Komputasi, vol.
20, no. 1, pp. 75–89, Sep. 2023, doi: 10.20956/j.v20i1.26503.

[12] E. Strago Giamiko, E. Lesmana Tjiong, and J. Pulomas Selatan Kav, “Pengembangan
Aplikasi Pengenalan Tulisan Tangan Abjad dan Angka Berbasis Convolutional Neural
Network,” 2024.

[13] S. Nurdiati et al., “Perbandingan AlexNet dan VGG untuk Pengenalan Ekspresi Wajah
pada Dataset Kelas Komputasi Lanjut Comparison of AlexNet and VGG for Facial
Expression Recognition on Advanced Computing Class Dataset.”

[14] R. A. Tilasefana and R. E. Putra, “Penerapan Metode Deep Learning Menggunakan
Algoritma CNN Dengan Arsitektur VGG NET Untuk Pengenalan Cuaca,” Journal of
Informatics and Computer Science, vol. 05, 2023.

[15] Weny Indah Kusumawati and Adisaputra Zidha Noorizki, “Perbandingan Performa
Algoritma VGG16 Dan VGG19 Melalui Metode CNN Untuk Klasifikasi Varietas Beras,”
Journal of Computer, Electronic, and Telecommunication, vol. 4, no. 2, Dec. 2023, doi:
10.52435/complete.v4i2.387.

[16] M. D. Meitantya, C. A. Sari, E. H. Rachmawanto, and R. R. Ali, “VGG-16 ARCHITECTURE
ON CNN FOR AMERICAN SIGN LANGUAGE CLASSIFICATION,” Jurnal Teknik
Informatika (Jutif), vol. 5, no. 4, pp. 1165–1171, Jul. 2024, doi:
10.52436/1.jutif.2024.5.4.2160.

[17] I. D. M. B. A. Darmawan, Linawati, G. Sukadarmika, N. M. A. E. D. Wirastuti, and R.
Pulungan, “Indonesian sign language system (SIBI) dataset: Sentences enhanced by
diverse facial expressions for total communication,” Data Brief, vol. 60, Jun. 2025, doi:
10.1016/j.dib.2025.111642.

[18] D. Sumarlie, C. Lubis, and T. Handhayani, “Pengenalan Kue Tradisional Indonesia
Menggunakan Algoritma Convolutional Neural Network,” 2022. [Online]. Available:
https://arxiv.org/abs/1409.1556,

	1. Pendahuluan
	2. Metode Penelitian
	3. Hasil dan Diskusi
	3.1. Implementasi Program
	3.2. Hasil Pelatihan Model
	3.3. Evaluasi Performa Arsitektur VGG
	a. Metrik Evaluasi Komprehensif
	b. Analisis Confusion Matrix

	3.4. Analisis Kompleksitas Komputasi
	a. Perbandingan GFLOPs dan Parameter Model
	b. Trade-off Antara Kompleksitas dan Performa
	c. Distribusi Beban Komputasi dalam Arsitektur

	4. Kesimpulan

