
Jurnal Elektronik Ilmu Komputer Udayana                                                       p-ISSN: 2301-5373 
Volume 14, No 3. February 2026                                     e-ISSN: 2654-5101 

 
 

449 

 
 

Implementasi Intrusion Prevention System (IPS) 
Menggunakan Signature – Based Detection Berbasis 

Suricata 

I Wayan Dimas Wirahadia1, I Gede Santi Astawa a2, Made Agung Raharja a3 I Made Widiartha a4 

 
aProgram Studi Informatika, Universitas Udayana 

Bali, Indonesia 
1iwayandimas20@gmail.com 

2 santi.astawa@unud.ac.id 
3made.agung@unud.ac.id 

4madewidiartha@unud.ac.id 
 

Abstract 
 

 

Network security is a crucial aspect of maintaining the integrity, confidentiality, and availability of data. 
One solution to strengthen network security is the implementation of an Intrusion Prevention System 
(IPS). This research implements a hybrid IPS that integrates Suricata as a signature-based detection 
engine with the Aho-Corasick algorithm for secondary log analysis and pattern matching. The system, 
implemented on a Windows operating system, is designed to automatically detect and block various 
types of attacks, such as Port Scanning, DDoS (SYN Flood), and Protocol-Specific Attacks. Testing 
was conducted through end-to-end attack scenarios to measure the system's effectiveness and 
response time. The results demonstrate that the proposed architecture is highly effective, achieving an 
average detection rate (recall) of 86.67% and a precision rate of 81.25%, which yields an F1-Score of 
83.87%. Response time analysis revealed that Suricata detects threats within an average of 1-3 
seconds, while the Aho-Corasick layer analyzes the resulting logs in a matter of milliseconds. This 
implementation proves that the combination of Suricata and Aho-Corasick provides a security solution 
that is not only effective at detecting known threats but also efficient at analyzing the results. 
 
Keyword : Network Security, Intrusion Prevention System, Suricata, Signature-Based Detection, Attack 
Detection  
 
1. Pendahuluan 

Keamanan jaringan adalah aspek krusial untuk menjaga integritas, kerahasiaan, dan ketersediaan 
data. Salah satu solusi untuk memperkuat keamanan adalah penerapan Intrusion Prevention System 
(IPS).  Seiring dengan meningkatnya digitalisasi, keamanan jaringan telah menjadi pilar utama dalam 
melindungi aset informasi dari berbagai ancaman siber. Kasus pelanggaran data, seperti serangan 
SQL Injection dan Distributed Denial-of-Service (DDoS), telah terbukti menimbulkan kerugian finansial 
yang signifikan dan merusak reputasi organisasi [1]. Sistem keamanan konvensional yang bersifat 
pasif, seperti firewall, seringkali tidak cukup untuk menangkal serangan modern yang semakin canggih 
dan dinamis. Oleh karena itu, diperlukan pendekatan keamanan proaktif yang tidak hanya mendeteksi, 
tetapi juga mampu mencegah serangan secara real-time. 

Intrusion Prevention System (IPS) muncul sebagai solusi untuk kebutuhan ini. Berbeda dengan 

Intrusion Detection System (IDS) yang hanya memberikan peringatan, IPS secara aktif memblokir lalu 
lintas berbahaya sebelum mencapai target [2]. Penelitian ini berfokus pada implementasi IPS 
menggunakan Suricata, sebuah engine deteksi ancaman open-source yang dikenal karena performa 
tingginya berkat arsitektur multi-threading [3]. Suricata mampu melakukan Deep Packet Inspection 
(DPI) dan menggunakan metode Deteksi Berbasis Signature untuk mengidentifikasi pola-pola 
serangan yang telah dikenal. Metode ini sangat efektif untuk ancaman yang polanya sudah 
terdokumentasi, menjadikannya garda terdepan yang andal dalam infrastruktur keamanan. Meskipun 
deteksi berbasis signature sangat efektif, implementasinya menghadapi tantangan skalabilitas dan 
performa. Seiring dengan berkembangnya ancaman baru, jumlah signature yang harus diperiksa oleh 
engine IPS dapat mencapai puluhan hingga ratusan ribu. Proses pencocokan pola secara linear 
terhadap database signature yang masif ini dapat menimbulkan latensi dan menjadi bottleneck pada 
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jaringan berkecepatan tinggi. Beban komputasi yang tinggi ini dapat menurunkan throughput jaringan 
dan bahkan membuka celah bagi penyerang untuk mengeksploitasi keterlambatan respons sistem. 
Oleh karena itu, diperlukan sebuah mekanisme untuk mengoptimalkan proses pencocokan signature 
tanpa mengorbankan kedalaman analisis.  

Untuk mengatasi tantangan ini, penelitian ini mengusulkan sebuah arsitektur hibrida yang inovatif 
dengan mengintegrasikan Suricata dengan algoritma Aho-Corasick [4]. Algoritma ini merupakan 
metode pencocokan string multi-pola yang sangat efisien, mampu mencari ribuan pola secara simultan 
dalam satu kali proses dengan kompleksitas waktu linear. Dalam arsitektur ini, Suricata bertindak 
sebagai sensor utama di lapisan jaringan untuk deteksi awal dan pemblokiran, sementara Aho-Corasick 
berfungsi sebagai mesin analisis sekunder pada lapisan log untuk validasi, korelasi peringatan, dan 
threat hunting dengan kecepatan tinggi. Kontribusi utama dari penelitian ini adalah merancang dan 
memvalidasi sebuah model IPS yang tidak hanya efektif dalam deteksi, tetapi juga efisien dalam 
pemrosesan data peringatan, sehingga menciptakan siklus respons keamanan yang lebih cepat dan 
cerdas. 

 
2. Metode Penelitian 
Metode penelitian ini menggunakan pendekatan metodologi System Development Life Cycle (SDLC) 
untuk memastikan bahwa setiap tahapan implementasi dilakukan secara sistematis, terstruktur, dan 
dapat dievaluasi secara menyeluruh dapat dilihat pada Gambar 1. SDLC merupakan sebuah kerangka 
kerja terorganisir yang umum digunakan dalam pengembangan sistem informasi, yang mencakup 
seluruh siklus hidup sistem mulai dari tahap inisialisasi hingga pemeliharaan pasca implementasi. 
Pendekatan ini sangat cocok untuk penelitian yang bersifat teknis dan aplikatif, seperti pengembangan 
dan penerapan sistem keamanan jaringan berbasis Suricata.  
 

 
 

Gambar 1. Alur Metode Penelitian 

 
2.1. Landasan Teori 
Sistem yang diusulkan dibangun di atas tiga teknologi inti. Pertama, Intrusion Prevention System (IPS), 
sebuah teknologi keamanan yang secara aktif memonitor dan memblokir lalu lintas berbahaya [5]. 
Kedua, Suricata, sebuah engine IDS/IPS open-source berkinerja tinggi yang mampu melakukan 
analisis paket mendalam secara paralel berkat arsitektur multi-threading [6]. Ketiga, Algoritma Aho-
Corasick, sebuah metode pencocokan string multi-pola yang sangat efisien. Algoritma ini membangun 
finite state machine dalam bentuk struktur data Trie dengan failure links, memungkinkan pencarian 
ribuan pola dalam waktu linear tanpa backtracking [4]. Penelitian sebelumnya telah mengonfirmasi 
efektivitas Suricata dalam mendeteksi berbagai serangan [1, 7], namun integrasi dengan Aho-Corasick 
sebagai lapisan analisis log sekunder merupakan pendekatan baru yang ditawarkan dalam penelitian 
ini untuk meningkatkan efisiensi. 
 
2.2. Arsitektur Sistem Hybrid 
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Proses utama sistem divisualisasikan pada Gambar 2, yang menunjukkan alur kerja mulai dari 
masuknya paket data, deteksi awal oleh Suricata, analisis log oleh Aho-Corasick, hingga eksekusi blokir 
IP oleh firewall. Diagram ini menegaskan bahwa sistem bekerja berlapis-lapis dengan kombinasi 
deteksi real-time dan validasi log sekunder. 
 

 

 
 
Alur dimulai saat paket data masuk ke jaringan. Suricata menangkap dan menganalisis setiap paket 
berdasarkan ruleset signature. Jika terdeteksi potensi ancaman, log akan dihasilkan. Log ini kemudian 
dianalisis oleh modul Aho-Corasick untuk validasi pola. Jika pola terkonfirmasi sebagai serangan, 
sistem akan memblokir IP penyerang melalui firewall dan mengirimkan peringatan. Jika tidak ada 
kecocokan, paket diteruskan ke tujuan. Arsitektur ini terdiri dari empat lapisan utama: 
 

1. Lapisan Deteksi Jaringan (Suricata): Bertugas sebagai sensor utama yang berjalan dalam 
mode IPS inline pada OS Windows menggunakan driver WinDivert. Lapisan ini melakukan 
inspeksi paket, deteksi ancaman awal berdasarkan ruleset signature, dan aksi pemblokiran 
instan. 

 

2. Lapisan Analisis Log (Python & Aho-Corasick): Sebuah skrip Python secara real-time 
memonitor file log eve.json yang dihasilkan Suricata. Skrip ini menggunakan algoritma Aho-
Corasick untuk melakukan pencocokan pola sekunder, validasi, dan korelasi alert dengan 
kecepatan tinggi. 

 

3. Lapisan Aksi & Manajemen (Firewall & Database): Berdasarkan hasil analisis, skrip Python 
mengirimkan perintah pemblokiran IP ke Windows Firewall dan mencatat semua detail insiden 
ke dalam database MySQL untuk analisis historis. 

 

4. Lapisan Visualisasi (Flask Web App): Sebuah dashboard berbasis web yang dibangun 
menggunakan framework Flask untuk menampilkan statistik dan log insiden secara real-time. 
 

 
2.3. Konfigurasi Signature dan Implementasi Aho-Corasick 
Contoh aturan signature ditunjukkan dalam Tabel 1, misalnya deteksi lebih dari 20 paket SYN dalam 

10 detik (port scanning) atau string ${jndi: pada lalu lintas HTTP (exploit Log4j). Tabel ini berfungsi 

untuk memperlihatkan bagaimana pola serangan diterjemahkan ke dalam rules yang dipahami 

Gambar 2. Alur Kerja Sistem 
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Suricata Efektivitas sistem sangat bergantung pada kualitas ruleset signature yang digunakan oleh 

Suricata dan pola yang dikenali oleh Aho-Corasick. Sebanyak 27 ruleset khusus dikembangkan untuk 

mendeteksi berbagai ancaman. Beberapa contoh signature kunci disajikan pada Tabel 1. 

Tabel 1. Signature rule 

ID Aturan Aksi 
 

Deskripsi Aturan (Ringkas) Tipe Ancaman 

2000001 Drop Mendeteksi >20 paket SYN 
dalam 10 detik dari 1 IP. 

Port Scan 

3000001 Drop Mendeteksi >100 paket SYN 
dalam 1 detik. 

DDoS 
 

4000002 Drop Mencari pola select atau '--' di 
URI HTTP. 

SQL Injection 

5000002 Drop  Mendeteksi string ${jndi: pada 
lalu lintas HTTP. 

Exploit Log4j 

 

Di lapisan analisis, algoritma Aho-Corasick diimplementasikan menggunakan Python. Prosesnya 

terdiri dari dua tahap: 

1. Tahap Konstruksi: Algoritma membangun struktur data Trie dari semua pola signature yang 

didefinisikan (misalnya, "Nmap SYN Scan", "SQL Injection Attempt"). Setelah itu, failure links 

dibuat untuk setiap node dalam Trie, yang memungkinkan transisi cepat saat terjadi 

ketidakcocokan karakter. 

2. Tahap Pencarian: Teks dari log eve.json (khususnya field alert.signature) diumpankan ke 

automata yang telah dibangun. Algoritma akan menelusuri teks sekali saja (single pass) untuk 

menemukan semua kemunculan pola yang terdefinisi dengan kompleksitas waktu O(n + m), di 

mana n adalah panjang teks dan m adalah jumlah total kemunculan pola. 

2.4. Desain Dashboard Sistem 
  

Untuk memfasilitasi pemantauan dan manajemen sistem, dirancang sebuah antarmuka pengguna 
berbasis web (dashboard) menggunakan kerangka kerja Flask. Dashboard ini berfungsi sebagai pusat 
kontrol visual yang menyajikan data keamanan secara real-time kepada administrator. tampilan 
antarmuka utama dashboard ditunjukkan pada Gambar 3 yang memperlihatkan bagaimana informasi 
serangan dan status jaringan divisualisasikan secara interaktif. Rekapitulasi intensitas serangan per 
hari ditampilkan pada Gambar 4, sedangkan detail serangan berdasarkan interval jam dapat dilihat 
pada Gambar 5. Desain sistem Intrusion Prevention System (IPS) berbasis Signature-Based Detection 
ini mengacu pada kebutuhan mendeteksi dan mencegah serangan secara real-time dengan 
memanfaatkan engine Suricata. Sistem dirancang dalam bentuk arsitektur modular yang terdiri atas 
beberapa komponen, yaitu mesin pendeteksi (Suricata), pengelola firewall (IPTables/WinFirewall), 
penyimpanan data (MySQL), dan antarmuka pengguna (Flask Web Framework). Suricata bertugas 
memantau lalu lintas jaringan dan menandai aktivitas mencurigakan berdasarkan kumpulan rules 
(tanda tangan serangan) yang telah dimuat 
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2.5. Skenario Pengujian 
Pengujian dilakukan pada lingkungan jaringan lokal yang terkontrol untuk mengevaluasi efektivitas dan 
waktu respons. 

 
a. Pengujian Efektivitas: Simulasi serangan dilakukan menggunakan tools seperti Nmap (Port 

Scanning), hping3 (DDoS), dan Scapy (Protocol-Specific Attack). Metrik yang diukur adalah 
True Positive (TP), False Positive (FP), dan False Negative (FN) untuk menghitung Presisi, 
Recall, dan F1-Score. 

b. Pengujian Waktu Respons: Waktu respons diukur sebagai selisih antara timestamp deteksi 
ancaman oleh sistem dan timestamp eksekusi tindakan pemblokiran oleh firewall. 

c. Lingkungan dan Skenario Pengujian: Pengujian dilakukan di lingkungan jaringan lokal yang 
terkontrol. Spesifikasi perangkat keras dan perangkat lunak yang digunakan dirangkum dalam 
Tabel 2. 

. 
Tabel 2. Penggunaan perangkat 

Komponen Spesifikasi Keterangan 

Processor AMD Ryzen 7 

5800H, 16CPU 

Dipilih karena kemampuan multi-threading yang 

baik untuk menangani rule processing paralel 

RAM 16 GB  Memory yang cukup untuk menangani ruleset dan 

traffic  

Gambar 3. Dashboard Monitoring Gambar 4. Rekapan Serangan Perhari 

Gambar 3. Rekapan Serangan Perjam 
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Storage 1 TB SSD Penyimpanan cepat untuk logging dan packet 

capture 

 
Simulasi serangan dilakukan menggunakan tools standar industri untuk empat 

kategori utama: 
 

1. Port Scanning: Menggunakan Nmap dengan berbagai teknik (TCP Connect, SYN Stealth, 
FIN, NULL, XMAS Scan). 

2. DDoS Attack: Menggunakan hping3 untuk melancarkan serangan SYN Flood, UDP 
Flood, dan ICMP Flood. 

3. Protocol-Specific Attack: Menggunakan Scapy untuk membuat paket khusus yang 
menargetkan kerentanan pada protokol DNS dan SMB. 

4. Exploit: Mensimulasikan serangan yang mengeksploitasi kerentanan umum seperti Buffer 
Overflow dan Remote Code Execution.  
 

3. Hasil dan Pembahasan 

3.1. Analisis Mekanisme Deteksi Aho-Corasick 

Visualisasi struktur Trie dengan failure links dapat dilihat pada Gambar 6, yang memperlihatkan 

bagaimana pola signature disusun agar pencocokan lebih efisien. Detail pola serangan yang 

dimasukkan dalam Trie dirangkum dalam Tabel 3, termasuk SYN Scan, FIN Scan, ICMP Flood, dan 

lain-lain. Hal ini menegaskan kemampuan Aho-Corasick menangani ribuan pola sekaligus. 

1. Pembentukan Automaton: Trie dan Failure Links 

Tahap pertama adalah membangun sebuah finite automaton dari kumpulan pola (signature) 

yang telah didefinisikan. Proses ini menciptakan sebuah struktur data Trie yang diperkaya 

dengan failure links. 

• Pembangunan Trie: Semua pola signature (misalnya, "SYN Scan", "FIN Scan", "ICMP 

Flood") dimasukkan ke dalam struktur data Trie. Setiap node merepresentasikan sebuah 

karakter, dan setiap jalur dari root ke node akhir merepresentasikan sebuah pola lengkap. 

Prefiks yang sama antar pola akan berbagi jalur yang sama, sehingga menghemat ruang 

penyimpanan secara signifikan. 

• Pembangunan Failure Links: Ini adalah langkah krusial yang membedakan Aho-Corasick. 

Untuk setiap node di dalam Trie, sebuah failure link dibuat. Tautan ini menunjuk ke node 

lain di dalam Trie yang merepresentasikan sufiks terpanjang dari string saat ini yang juga 

merupakan prefiks dari pola lain. Fungsi dari failure link adalah untuk menghindari 

backtracking saat terjadi ketidakcocokan karakter. Alih-alih memulai pencarian dari awal, 

algoritma cukup mengikuti failure link ke status berikutnya yang paling relevan, sehingga 

menjaga performa pencarian tetap linear.  
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Visualisasi pada Gambar 6 menunjukkan struktur Trie yang dihasilkan. Node berwarna biru muda 

adalah node intermediet, sedangkan node berwarna merah menandakan akhir dari sebuah pola yang 

valid. Garis putus-putus berwarna hijau merepresentasikan failure links yang menghubungkan berbagai 

cabang dari Trie, memungkinkan transisi cepat saat terjadi kegagalan pencocokan. 

2. Analisis Struktur Trie yang Dihasilkan  

Struktur Trie yang telah dibangun beserta failure links-nya dapat dianalisis lebih lanjut melalui tabel 

berikut, yang merangkum properti dari setiap node. 

Tabel 3. Strukture Node Aho-Corasick 

Node Path Kedalaman Output 

root-S-Y-N- -S-c-a-n 8 SYN Scan 

root-S-W-E-E-P- -C-o-n-n-e-c-t 13 SWEEP Connect 

root-F-I-N- -S-c-a-n 8 FIN Scan 

root-X-M-A-S- -S-c-a-n 9 XMAS Scan 

root-N-U-L-L- -S-c-a-n 9 NULL Scan 

root-A-C-K- -S-c-a-n 8 ACK Scan 

root-U-D-P- -S-c-a-n 8 UDP Scan 

root-I-C-M-P- -F-l-o-o-d 10 ICMP Flood 

root-T-C-P- -C-o-n-n-e-c-t 11 TCP Connect 

 

Tabel 3 menunjukkan bagaimana setiap pola signature direpresentasikan sebagai sebuah jalur di 

dalam Trie. Kolom "Target Failure" menunjukkan ke mana algoritma akan "melompat" jika terjadi 

ketidakcocokan pada node tersebut. Dalam banyak kasus, tautan ini kembali ke root, tetapi pada 

implementasi yang lebih kompleks, tautan ini dapat menunjuk ke node intermediet lain, yang secara 

drastis meningkatkan efisiensi pencarian. 

Gambar 4. Pembentukan Failure 
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3.2. Hasil Pengujian Efektifitas 

Untuk mengukur performa sistem secara holistik, hasil dari 45 skenario pengujian dikompilasi ke dalam 
sebuah confusion matrix. Matriks ini membandingkan hasil prediksi sistem dengan kondisi kenyataan, 
yang menjadi dasar untuk menghitung metrik performa standar. Hasilnya disajikan pada Tabel 4. 
 

Tabel 4. Confusion Matrix 

 Positif Negatif 

True 13 2 

False 3 27 

 
Dari confusion matrix tersebut, dapat diuraikan: 

• True Positive (TP) = 13: Sistem berhasil mengidentifikasi 13 dari 15 serangan dengan benar. 

• False Negative (FN) = 2: Sistem gagal mendeteksi 2 serangan yang sebenarnya terjadi. 

• False Positive (FP) = 3: Sistem salah mengklasifikasikan 3 aktivitas normal sebagai serangan. 

• True Negative (TN) = 27: Sistem dengan benar mengabaikan 27 dari 30 aktivitas normal. 
 
Berdasarkan data di atas, metrik performa sistem dihitung sebagai berikut: 

1. Akurasi (Accuracy) Akurasi mengukur proporsi prediksi yang benar (TP + TN) dari total 
keseluruhan kasus. 

• Formula: Akurasi = (TP + TN) / (TP + TN + FP + FN)     (1) 

• Perhitungan: Akurasi = (13 + 27) / (13 + 27 + 3 + 2) = 40 / 45 = 88.89%   (2) 

• Interpretasi: Nilai akurasi 88.89% menunjukkan bahwa sistem memiliki keandalan yang 
sangat tinggi dalam membuat keputusan yang benar, baik dalam mengidentifikasi 
serangan maupun mengabaikan lalu lintas yang sah. 

 

2. Presisi (Precision) Presisi mengukur kualitas dari peringatan yang dihasilkan, yaitu seberapa 
banyak prediksi serangan yang benar-benar merupakan serangan. 

• Formula: Presisi = TP / (TP + FP)        (1) 

• Perhitungan: Presisi = 13 / (13 + 3) = 13 / 16 = 81.25%     (2) 

• Interpretasi: Tingkat presisi 81.25% adalah hasil yang baik, menunjukkan bahwa 
mayoritas peringatan yang dihasilkan oleh sistem dapat dipercaya. Namun, adanya 3 
kasus False Positive (FP) menandakan bahwa beberapa signature mungkin terlalu umum 
(kurang spesifik), sehingga memicu alarm pada lalu lintas normal. Ini adalah area krusial 
untuk perbaikan, karena false positive dapat menyebabkan kelelahan peringatan (alert 
fatigue) bagi administrator. 
 

3. Recall (Sensitivity / Tingkat Deteksi) Recall adalah metrik terpenting untuk sistem 
keamanan, karena mengukur kemampuan sistem untuk mendeteksi semua serangan yang 
terjadi. 

• Formula: Recall = TP / (TP + FN)        (1) 

• Perhitungan: Recall = 13 / (13 + 2) = 13 / 15 = 86.67%     (2) 

• Interpretasi: Dengan recall sebesar 86.67%, sistem ini terbukti sangat efektif dalam 
menjalankan fungsi utamanya, yaitu mendeteksi ancaman. Dua kasus False Negative (FN) 
yang terlewatkan menjadi perhatian utama. Analisis lebih lanjut menunjukkan bahwa 
kegagalan ini terjadi pada skenario serangan yang menggunakan teknik obfuscation dan 
fragmentasi paket untuk menghindari deteksi berbasis signature. Hal ini menyoroti 
keterbatasan inheren dari deteksi berbasis signature dan perlunya pembaruan ruleset 
secara berkala. 

 

4. F1-Score F1-Score adalah rata-rata harmonik dari presisi dan recall, memberikan skor tunggal 
yang menyeimbangkan kedua metrik tersebut. 

• Formula: F1-Score = 2 * (Presisi * Recall) / (Presisi + Recall)    (1) 
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• Perhitungan: F1-Score = 2 * (0.8125 * 0.8667) / (0.8125 + 0.8667) = 83.87%  (2) 

• Interpretasi: F1-Score sebesar 83.87% menegaskan bahwa sistem memiliki 
keseimbangan yang sangat baik antara kemampuan mendeteksi ancaman secara 
komprehensif (recall) dan menjaga kualitas peringatan agar tetap akurat (presisi). 

 
 
Hasil ini menunjukkan bahwa sistem memiliki kemampuan deteksi (Recall) yang sangat baik, 
dengan berhasil mengidentifikasi 13 dari 15 serangan. Namun, adanya 3 kasus False Positive (FP) 
sedikit menurunkan tingkat presisi menjadi 81.25%, yang mengindikasikan bahwa beberapa aturan 
deteksi perlu disempurnakan untuk meminimalkan alarm palsu. Nilai F1-Score sebesar 83.87% 
mengonfirmasi bahwa sistem menjaga keseimbangan yang solid antara deteksi dan presisi. 
 

3.3. Analisis Waktu Respons 

 
Pada bagian ini, dilakukan analisis terhadap waktu respons atau latensi deteksi dari dua komponen 
utama sistem: mesin deteksi Suricata dan algoritma pencocokan pola Aho-Corasick. Pengujian ini 
bertujuan untuk mengetahui kecepatan masing-masing komponen dalam mengidentifikasi berbagai 
jenis serangan yang disimulasikan.Pengujian waktu respons memisahkan latensi pada dua lapisan 
utama: deteksi oleh Suricata dan analisis oleh Aho-Corasick, seperti yang ditunjukkan pada Tabel 5. 

Tabel 5. Perbandingan Rata-Rata Waktu Respons 

Jenis Serangan Waktu Deteksi Suricata 
(detik) 

 

Waktu Analisis Aho-Corasick 
(md) 

Port Scanning 1.071 0.012 

DDoS Attack 1.133 11.825 

Protocol-Specific 3.325 14.114 

Exploit 0.959 5.602 

 

 
 
Perbandingan kinerja Suricata dan Aho-Corasick ditunjukkan pada Tabel 5. Suricata memerlukan 1–3 
detik untuk deteksi, sedangkan Aho-Corasick hanya membutuhkan milidetik. Hasil ini divisualisasikan 
dalam Gambar 7 (rata-rata waktu respons Aho-Corasick) dan Gambar 8 (rata-rata waktu respons 
Suricata), yang menegaskan efisiensi arsitektur hibrida Hasilnya menunjukkan perbedaan performa 
yang signifikan. Suricata, yang melakukan analisis paket mendalam (Deep Packet Inspection), 
membutuhkan 1 hingga 3 detik untuk mendeteksi ancaman. Waktu deteksi terlama tercatat pada 
serangan Protocol-Specific, yang memerlukan proses dekode protokol yang kompleks. Di sisi lain, 
algoritma Aho-Corasick menunjukkan performa yang jauh lebih unggul, dengan memproses dan 
mencocokkan pola di log dalam hitungan milidetik. Hal ini membuktikan bahwa arsitektur hibrida ini 

Gambar 7. Response Time Ahocorasick Gambar 8. Response Time Suricata 
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efektif, di mana Suricata bertindak sebagai sensor garis depan yang andal, dan Aho-Corasick 
menyediakan mesin analisis sekunder yang sangat efisien untuk investigasi pasca-kejadian. 
 
 
 
4. Kesimpulan 
Penelitian ini berhasil mengimplementasikan dan memvalidasi arsitektur Intrusion Prevention System 

(IPS) hibrida yang secara efektif mengombinasikan kekuatan deteksi mendalam dari Suricata dengan 

efisiensi analisis log dari algoritma Aho-Corasick. Efektivitas sistem ini terbukti secara kuantitatif melalui 

hasil pengujian yang solid. Dengan kemampuan mendeteksi 13 dari 15 skenario serangan, sistem 

mencapai tingkat recall (kemampuan deteksi) sebesar 86.67%, yang menunjukkan keandalannya 

dalam mengidentifikasi mayoritas ancaman. Keseimbangan performa sistem dikonfirmasi oleh F1-

Score sebesar 83.87%, yang merefleksikan harmoni yang baik antara kemampuan deteksi yang tinggi 

dan tingkat presisi (81.25%) yang solid, meskipun masih terdapat ruang untuk mengurangi false 

positive. Integrasi algoritma Aho-Corasick sebagai lapisan analisis sekunder terbukti secara signifikan 

mempercepat proses validasi dan korelasi peringatan. Sementara Suricata membutuhkan waktu 1 

hingga 3 detik untuk melakukan inspeksi paket secara real-time, modul Aho-Corasick mampu 

memproses dan mencocokkan pola pada log yang dihasilkan dalam hitungan milidetik. Hal ini 

menegaskan bahwa arsitektur ini berhasil menerapkan pembagian kerja yang optimal, di mana Suricata 

berfungsi sebagai sensor garis depan yang tangguh, dan Aho-Corasick sebagai mesin analisis pasca-

kejadian yang sangat efisien. Sistem ini juga berhasil menunjukkan kemampuannya dalam memberikan 

perlindungan aktif secara end-to-end, mulai dari deteksi ancaman di jaringan hingga eksekusi 

pemblokiran alamat IP penyerang secara otomatis melalui Windows Firewall, melengkapi siklus 

respons insiden. Untuk pengembangan di masa depan, disarankan untuk mengintegrasikan deteksi 

berbasis anomali menggunakan machine learning untuk menangani serangan zero-day dan 

mengotomatiskan manajemen ruleset melalui threat intelligence feeds.  
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