Jurnal Elektronik lIlmu Komputer Udayana p-ISSN: 2301-5373
Volume 14, No 3. February 2026 e-ISSN: 2654-5101

Implementasi Intrusion Prevention System (IPS)
Menggunakan Signature — Based Detection Berbasis

Suricata
| Wayan Dimas Wirahadi?!, I Gede Santi Astawa #?, Made Agung Raharja 2 [Made Widiartha 2

@Program Studi Informatika, Universitas Udayana
Bali, Indonesia
iwayandimas20@gmail.com
2 santi.astawa@unud.ac.id
3made.agung@unud.ac.id
“madewidiartha@unud.ac.id

Abstract

Network security is a crucial aspect of maintaining the integrity, confidentiality, and availability of data.
One solution to strengthen network security is the implementation of an Intrusion Prevention System
(IPS). This research implements a hybrid IPS that integrates Suricata as a signature-based detection
engine with the Aho-Corasick algorithm for secondary log analysis and pattern matching. The system,
implemented on a Windows operating system, is designed to automatically detect and block various
types of attacks, such as Port Scanning, DDoS (SYN Flood), and Protocol-Specific Attacks. Testing
was conducted through end-to-end attack scenarios to measure the system's effectiveness and
response time. The results demonstrate that the proposed architecture is highly effective, achieving an
average detection rate (recall) of 86.67% and a precision rate of 81.25%, which yields an F1-Score of
83.87%. Response time analysis revealed that Suricata detects threats within an average of 1-3
seconds, while the Aho-Corasick layer analyzes the resulting logs in a matter of milliseconds. This
implementation proves that the combination of Suricata and Aho-Corasick provides a security solution
that is not only effective at detecting known threats but also efficient at analyzing the results.

Keyword : Network Security, Intrusion Prevention System, Suricata, Signature-Based Detection, Attack
Detection

1. Pendahuluan

Keamanan jaringan adalah aspek krusial untuk menjaga integritas, kerahasiaan, dan ketersediaan
data. Salah satu solusi untuk memperkuat keamanan adalah penerapan Intrusion Prevention System
(IPS). Seiring dengan meningkatnya digitalisasi, keamanan jaringan telah menjadi pilar utama dalam
melindungi aset informasi dari berbagai ancaman siber. Kasus pelanggaran data, seperti serangan
SQL Injection dan Distributed Denial-of-Service (DDoS), telah terbukti menimbulkan kerugian finansial
yang signifikan dan merusak reputasi organisasi [1]. Sistem keamanan konvensional yang bersifat
pasif, seperti firewall, seringkali tidak cukup untuk menangkal serangan modern yang semakin canggih
dan dinamis. Oleh karena itu, diperlukan pendekatan keamanan proaktif yang tidak hanya mendeteksi,
tetapi juga mampu mencegah serangan secara real-time.

Intrusion Prevention System (IPS) muncul sebagai solusi untuk kebutuhan ini. Berbeda dengan
Intrusion Detection System (IDS) yang hanya memberikan peringatan, IPS secara aktif memblokir lalu
lintas berbahaya sebelum mencapai target [2]. Penelitian ini berfokus pada implementasi IPS
menggunakan Suricata, sebuah engine deteksi ancaman open-source yang dikenal karena performa
tingginya berkat arsitektur multi-threading [3]. Suricata mampu melakukan Deep Packet Inspection
(DPI) dan menggunakan metode Deteksi Berbasis Signature untuk mengidentifikasi pola-pola
serangan yang telah dikenal. Metode ini sangat efektif untuk ancaman yang polanya sudah
terdokumentasi, menjadikannya garda terdepan yang andal dalam infrastruktur keamanan. Meskipun
deteksi berbasis signature sangat efektif, implementasinya menghadapi tantangan skalabilitas dan
performa. Seiring dengan berkembangnya ancaman baru, jumlah signature yang harus diperiksa oleh
engine IPS dapat mencapai puluhan hingga ratusan ribu. Proses pencocokan pola secara linear
terhadap database signature yang masif ini dapat menimbulkan latensi dan menjadi bottleneck pada

449

mailto:1iwayandimas20@gmail.com

jaringan berkecepatan tinggi. Beban komputasi yang tinggi ini dapat menurunkan throughput jaringan
dan bahkan membuka celah bagi penyerang untuk mengeksploitasi keterlambatan respons sistem.
Oleh karena itu, diperlukan sebuah mekanisme untuk mengoptimalkan proses pencocokan signature
tanpa mengorbankan kedalaman analisis.

Untuk mengatasi tantangan ini, penelitian ini mengusulkan sebuah arsitektur hibrida yang inovatif
dengan mengintegrasikan Suricata dengan algoritma Aho-Corasick [4]. Algoritma ini merupakan
metode pencocokan string multi-pola yang sangat efisien, mampu mencari ribuan pola secara simultan
dalam satu kali proses dengan kompleksitas waktu linear. Dalam arsitektur ini, Suricata bertindak
sebagai sensor utama di lapisan jaringan untuk deteksi awal dan pemblokiran, sementara Aho-Corasick
berfungsi sebagai mesin analisis sekunder pada lapisan log untuk validasi, korelasi peringatan, dan
threat hunting dengan kecepatan tinggi. Kontribusi utama dari penelitian ini adalah merancang dan
memvalidasi sebuah model IPS yang tidak hanya efektif dalam deteksi, tetapi juga efisien dalam
pemrosesan data peringatan, sehingga menciptakan siklus respons keamanan yang lebih cepat dan
cerdas.

2, Metode Penelitian

Metode penelitian ini menggunakan pendekatan metodologi System Development Life Cycle (SDLC)
untuk memastikan bahwa setiap tahapan implementasi dilakukan secara sistematis, terstruktur, dan
dapat dievaluasi secara menyeluruh dapat dilihat pada Gambar 1. SDLC merupakan sebuah kerangka
kerja terorganisir yang umum digunakan dalam pengembangan sistem informasi, yang mencakup
seluruh siklus hidup sistem mulai dari tahap inisialisasi hingga pemeliharaan pasca implementasi.
Pendekatan ini sangat cocok untuk penelitian yang bersifat teknis dan aplikatif, seperti pengembangan
dan penerapan sistem keamanan jaringan berbasis Suricata.

Analysis
3 —l
| —— Design —l

brneeeeesnnnesennnnnnns drmcnnennend Implementation

A

E é.........................i Testn]_g

Y

T e L EE eI E bomrrrrr e e Maintenance

Gambar 1. Alur Metode Penelitian

21. Landasan Teori

Sistem yang diusulkan dibangun di atas tiga teknologi inti. Pertama, Intrusion Prevention System (IPS),
sebuah teknologi keamanan yang secara aktif memonitor dan memblokir lalu lintas berbahaya [5].
Kedua, Suricata, sebuah engine IDS/IPS open-source berkinerja tinggi yang mampu melakukan
analisis paket mendalam secara paralel berkat arsitektur multi-threading [6]. Ketiga, Algoritma Aho-
Corasick, sebuah metode pencocokan string multi-pola yang sangat efisien. Algoritma ini membangun
finite state machine dalam bentuk struktur data Trie dengan failure links, memungkinkan pencarian
ribuan pola dalam waktu linear tanpa backtracking [4]. Penelitian sebelumnya telah mengonfirmasi
efektivitas Suricata dalam mendeteksi berbagai serangan [1, 7], namun integrasi dengan Aho-Corasick
sebagai lapisan analisis log sekunder merupakan pendekatan baru yang ditawarkan dalam penelitian
ini untuk meningkatkan efisiensi.

2.2, Arsitektur Sistem Hybrid

450

Jurnal Elektronik lIlmu Komputer Udayana p-ISSN: 2301-5373
Volume 14, No 3. February 2026 e-ISSN: 2654-5101

Proses utama sistem divisualisasikan pada Gambar 2, yang menunjukkan alur kerja mulai dari
masuknya paket data, deteksi awal oleh Suricata, analisis log oleh Aho-Corasick, hingga eksekusi blokir
IP oleh firewall. Diagram ini menegaskan bahwa sistem bekerja berlapis-lapis dengan kombinasi
deteksi real-time dan validasi log sekunder.

tim
Al

. N Update IP tables Block TP penyerang _
Paket Data Firewall dam drop paket |—-| Beri Peringatan
v
Suricata Menangkap TIDAK: ’I palket menuju fujuzn I
Paket
4@

Analisis dan deteksi
Paket

Signature Suricata memeriksa pola

patterns

Gambar 2. Alur Kerja Sistem

Alur dimulai saat paket data masuk ke jaringan. Suricata menangkap dan menganalisis setiap paket
berdasarkan ruleset signature. Jika terdeteksi potensi ancaman, log akan dihasilkan. Log ini kemudian
dianalisis oleh modul Aho-Corasick untuk validasi pola. Jika pola terkonfirmasi sebagai serangan,
sistem akan memblokir IP penyerang melalui firewall dan mengirimkan peringatan. Jika tidak ada
kecocokan, paket diteruskan ke tujuan. Arsitektur ini terdiri dari empat lapisan utama:

1. Lapisan Deteksi Jaringan (Suricata): Bertugas sebagai sensor utama yang berjalan dalam
mode IPS inline pada OS Windows menggunakan driver WinDivert. Lapisan ini melakukan
inspeksi paket, deteksi ancaman awal berdasarkan ruleset signature, dan aksi pemblokiran
instan.

2. Lapisan Analisis Log (Python & Aho-Corasick): Sebuah skrip Python secara real-time
memonitor file log eve.json yang dihasilkan Suricata. Skrip ini menggunakan algoritma Aho-
Corasick untuk melakukan pencocokan pola sekunder, validasi, dan korelasi alert dengan
kecepatan tinggi.

3. Lapisan Aksi & Manajemen (Firewall & Database): Berdasarkan hasil analisis, skrip Python
mengirimkan perintah pemblokiran IP ke Windows Firewall dan mencatat semua detail insiden
ke dalam database MySQL untuk analisis historis.

4. Lapisan Visualisasi (Flask Web App): Sebuah dashboard berbasis web yang dibangun
menggunakan framework Flask untuk menampilkan statistik dan log insiden secara real-time.

2.3. Konfigurasi Signature dan Implementasi Aho-Corasick
Contoh aturan signature ditunjukkan dalam Tabel 1, misalnya deteksi lebih dari 20 paket SYN dalam

10 detik (port scanning) atau string ${jndi: pada lalu lintas HTTP (exploit Log4j). Tabel ini berfungsi
untuk memperlihatkan bagaimana pola serangan diterjemahkan ke dalam rules yang dipahami

451

Suricata Efektivitas sistem sangat bergantung pada kualitas ruleset signature yang digunakan oleh
Suricata dan pola yang dikenali oleh Aho-Corasick. Sebanyak 27 ruleset khusus dikembangkan untuk
mendeteksi berbagai ancaman. Beberapa contoh signature kunci disajikan pada Tabel 1.

Tabel 1. Signature rule

ID Aturan Aksi | Deskripsi Aturan (Ringkas) Tipe Ancaman

2000001 Drop | Mendeteksi >20 paket SYN Port Scan
dalam 10 detik dari 1 IP.

3000001 Drop | Mendeteksi >100 paket SYN DDoS
dalam 1 detik.

4000002 Drop | Mencari pola select atau '--' di | SQL Injection
URI HTTP.

5000002 Drop | Mendeteksi string ${jndi: pada | Exploit Log4j
lalu lintas HTTP.

Di lapisan analisis, algoritma Aho-Corasick diimplementasikan menggunakan Python. Prosesnya
terdiri dari dua tahap:

1. Tahap Konstruksi: Algoritma membangun struktur data Trie dari semua pola signature yang
didefinisikan (misalnya, "Nmap SYN Scan", "SQL Injection Attempt"). Setelah itu, failure links
dibuat untuk setiap node dalam Trie, yang memungkinkan transisi cepat saat terjadi
ketidakcocokan karakter.

2. Tahap Pencarian: Teks dari log eve.json (khususnya field alert.signature) diumpankan ke
automata yang telah dibangun. Algoritma akan menelusuri teks sekali saja (single pass) untuk
menemukan semua kemunculan pola yang terdefinisi dengan kompleksitas waktu O(n + m), di
mana n adalah panjang teks dan m adalah jumlah total kemunculan pola.

2.4. Desain Dashboard Sistem

Untuk memfasilitasi pemantauan dan manajemen sistem, dirancang sebuah antarmuka pengguna
berbasis web (dashboard) menggunakan kerangka kerja Flask. Dashboard ini berfungsi sebagai pusat
kontrol visual yang menyajikan data keamanan secara real-time kepada administrator. tampilan
antarmuka utama dashboard ditunjukkan pada Gambar 3 yang memperlihatkan bagaimana informasi
serangan dan status jaringan divisualisasikan secara interaktif. Rekapitulasi intensitas serangan per
hari ditampilkan pada Gambar 4, sedangkan detail serangan berdasarkan interval jam dapat dilihat
pada Gambar 5. Desain sistem Intrusion Prevention System (IPS) berbasis Signature-Based Detection
ini mengacu pada kebutuhan mendeteksi dan mencegah serangan secara real-time dengan
memanfaatkan engine Suricata. Sistem dirancang dalam bentuk arsitektur modular yang terdiri atas
beberapa komponen, yaitu mesin pendeteksi (Suricata), pengelola firewall (IPTables/WinFirewall),
penyimpanan data (MySQL), dan antarmuka pengguna (Flask Web Framework). Suricata bertugas
memantau lalu lintas jaringan dan menandai aktivitas mencurigakan berdasarkan kumpulan rules
(tanda tangan serangan) yang telah dimuat

452

Jurnal Elektronik lIlmu Komputer Udayana p-ISSN: 2301-5373
Volume 14, No 3. February 2026 e-ISSN: 2654-5101

88 Daily Attacks (Last 14 Days)

Gambar 3. Dashboard Monitoring Gambar 4. Rekapan Serangan Perhari

Gambar 3. Rekapan Serangan Perjam

2.5. Skenario Pengujian
Pengujian dilakukan pada lingkungan jaringan lokal yang terkontrol untuk mengevaluasi efektivitas dan
waktu respons.

a. Pengujian Efektivitas: Simulasi serangan dilakukan menggunakan tools seperti Nmap (Port
Scanning), hping3 (DDoS), dan Scapy (Protocol-Specific Attack). Metrik yang diukur adalah
True Positive (TP), False Positive (FP), dan False Negative (FN) untuk menghitung Presisi,
Recall, dan F1-Score.

b. Pengujian Waktu Respons: Waktu respons diukur sebagai selisih antara timestamp deteksi
ancaman oleh sistem dan timestamp eksekusi tindakan pemblokiran oleh firewall.

c. Lingkungan dan Skenario Pengujian: Pengujian dilakukan di lingkungan jaringan lokal yang
terkontrol. Spesifikasi perangkat keras dan perangkat lunak yang digunakan dirangkum dalam
Tabel 2.

Tabel 2. Penggunaan perangkat

Komponen | Spesifikasi Keterangan

Processor | AMD Ryzen 7 | Dipilih karena kemampuan multi-threading yang
5800H, 16CPU | baik untuk menangani rule processing paralel

RAM 16 GB Memory yang cukup untuk menangani ruleset dan
traffic

453

Storage 1 TB SSD Penyimpanan cepat untuk logging dan packet

capture

Simulasi serangan dilakukan menggunakan tools standar industri untuk empat
kategori utama:

1. Port Scanning: Menggunakan Nmap dengan berbagai teknik (TCP Connect, SYN Stealth,
FIN, NULL, XMAS Scan).

2. DDoS Attack: Menggunakan hping3 untuk melancarkan serangan SYN Flood, UDP
Flood, dan ICMP Flood.

3. Protocol-Specific Attack: Menggunakan Scapy untuk membuat paket khusus yang
menargetkan kerentanan pada protokol DNS dan SMB.

4. Exploit: Mensimulasikan serangan yang mengeksploitasi kerentanan umum seperti Buffer
Overflow dan Remote Code Execution.

3. Hasil dan Pembahasan

3.1. Analisis Mekanisme Deteksi Aho-Corasick

Visualisasi struktur Trie dengan failure links dapat dilihat pada Gambar 6, yang memperlihatkan
bagaimana pola signature disusun agar pencocokan lebih efisien. Detail pola serangan yang
dimasukkan dalam Trie dirangkum dalam Tabel 3, termasuk SYN Scan, FIN Scan, ICMP Flood, dan
lain-lain. Hal ini menegaskan kemampuan Aho-Corasick menangani ribuan pola sekaligus.

1. Pembentukan Automaton: Trie dan Failure Links

Tahap pertama adalah membangun sebuah finite automaton dari kumpulan pola (signature)
yang telah didefinisikan. Proses ini menciptakan sebuah struktur data Trie yang diperkaya
dengan failure links.

e Pembangunan Trie: Semua pola signature (misalnya, "SYN Scan", "FIN Scan", "ICMP
Flood") dimasukkan ke dalam struktur data Trie. Setiap node merepresentasikan sebuah
karakter, dan setiap jalur dari root ke node akhir merepresentasikan sebuah pola lengkap.
Prefiks yang sama antar pola akan berbagi jalur yang sama, sehingga menghemat ruang
penyimpanan secara signifikan.

e Pembangunan Failure Links: Ini adalah langkah krusial yang membedakan Aho-Corasick.
Untuk setiap node di dalam Trie, sebuah failure link dibuat. Tautan ini menunjuk ke node
lain di dalam Trie yang merepresentasikan sufiks terpanjang dari string saat ini yang juga
merupakan prefiks dari pola lain. Fungsi dari failure link adalah untuk menghindari
backtracking saat terjadi ketidakcocokan karakter. Alih-alih memulai pencarian dari awal,
algoritma cukup mengikuti failure link ke status berikutnya yang paling relevan, sehingga
menjaga performa pencarian tetap linear.

454

Jurnal Elektronik llmu Komputer Udayana
Volume 14, No 3. February 2026

Struktur Trie dari Patterns
{end nodes = pola lengkap)

p-ISSN: 2301-5373
e-ISSN: 2654-5101

FEBLSN roetSwE

.

uuuuuuuuuu

s

FOOt TR Eomn

root- BB S

Gambar 4. Pembentukan Failure

Visualisasi pada Gambar 6 menunjukkan struktur Trie yang dihasilkan. Node berwarna biru muda
adalah node intermediet, sedangkan node berwarna merah menandakan akhir dari sebuah pola yang
valid. Garis putus-putus berwarna hijau merepresentasikan failure links yang menghubungkan berbagai
cabang dari Trie, memungkinkan transisi cepat saat terjadi kegagalan pencocokan.

2. Analisis Struktur Trie yang Dihasilkan

Struktur Trie yang telah dibangun beserta failure links-nya dapat dianalisis lebih lanjut melalui tabel
berikut, yang merangkum properti dari setiap node.

Tabel 3. Strukture Node Aho-Corasick

Node Path | Kedalaman | Output
root-S-Y-N- -S-c-a-n 8 SYN Scan
root-S-W-E-E-P- -C-0-n-n-e-c-t 13 SWEEP Connect
root-F-I-N- -S-c-a-n 8 FIN Scan
root-X-M-A-S- -S-c-a-n 9 XMAS Scan
root-N-U-L-L- -S-c-a-n 9 NULL Scan
root-A-C-K- -S-c-a-n 8 ACK Scan
root-U-D-P- -S-c-a-n 8 UDP Scan
root-I-C-M-P- -F-l-0-o-d 10 ICMP Flood
root-T-C-P- -C-0-n-n-e-c-t 11 TCP Connect

Tabel 3 menunjukkan bagaimana setiap pola signature direpresentasikan sebagai sebuah jalur di
dalam Trie. Kolom "Target Failure" menunjukkan ke mana algoritma akan "melompat" jika terjadi
ketidakcocokan pada node tersebut. Dalam banyak kasus, tautan ini kembali ke root, tetapi pada
implementasi yang lebih kompleks, tautan ini dapat menunjuk ke node intermediet lain, yang secara

drastis meningkatkan efisiensi pencarian.

455

3.2. Hasil Pengujian Efektifitas

Untuk mengukur performa sistem secara holistik, hasil dari 45 skenario pengujian dikompilasi ke dalam
sebuah confusion matrix. Matriks ini membandingkan hasil prediksi sistem dengan kondisi kenyataan,
yang menjadi dasar untuk menghitung metrik performa standar. Hasilnya disajikan pada Tabel 4.

Tabel 4. Confusion Matrix

Positif Negatif
True 13 2
False 3 27

Dari confusion matrix tersebut, dapat diuraikan:

True Positive (TP) = 13: Sistem berhasil mengidentifikasi 13 dari 15 serangan dengan benar.
False Negative (FN) = 2: Sistem gagal mendeteksi 2 serangan yang sebenarnya terjadi.
False Positive (FP) = 3: Sistem salah mengklasifikasikan 3 aktivitas normal sebagai serangan.
True Negative (TN) = 27: Sistem dengan benar mengabaikan 27 dari 30 aktivitas normal.

Berdasarkan data di atas, metrik performa sistem dihitung sebagai berikut:

1. Akurasi (Accuracy) Akurasi mengukur proporsi prediksi yang benar (TP + TN) dari total
keseluruhan kasus.

Formula: Akurasi = (TP + TN) /(TP + TN + FP + FN) (1)
Perhitungan: Akurasi = (13 + 27)/ (13 + 27 + 3 + 2) =40/ 45 = 88.89% (2)
Interpretasi: Nilai akurasi 88.89% menunjukkan bahwa sistem memiliki keandalan yang
sangat tinggi dalam membuat keputusan yang benar, baik dalam mengidentifikasi
serangan maupun mengabaikan lalu lintas yang sah.

2. Presisi (Precision) Presisi mengukur kualitas dari peringatan yang dihasilkan, yaitu seberapa
banyak prediksi serangan yang benar-benar merupakan serangan.

Formula: Presisi=TP /(TP + FP) (1)
Perhitungan: Presisi=13/(13+3)=13/16 = 81.25% (2)
Interpretasi: Tingkat presisi 81.25% adalah hasil yang baik, menunjukkan bahwa
mayoritas peringatan yang dihasilkan oleh sistem dapat dipercaya. Namun, adanya 3
kasus False Positive (FP) menandakan bahwa beberapa signature mungkin terlalu umum
(kurang spesifik), sehingga memicu alarm pada lalu lintas normal. Ini adalah area krusial
untuk perbaikan, karena false positive dapat menyebabkan kelelahan peringatan (alert
fatigue) bagi administrator.

3. Recall (Sensitivity / Tingkat Deteksi) Recall adalah metrik terpenting untuk sistem
keamanan, karena mengukur kemampuan sistem untuk mendeteksi semua serangan yang

terjadi.
e Formula: Recall =TP /(TP + FN) (1)
o Perhitungan: Recall=13/(13+2)=13/15=86.67% (2)

Interpretasi: Dengan recall sebesar 86.67%, sistem ini terbukti sangat efektif dalam
menjalankan fungsi utamanya, yaitu mendeteksi ancaman. Dua kasus False Negative (FN)
yang terlewatkan menjadi perhatian utama. Analisis lebih lanjut menunjukkan bahwa
kegagalan ini terjadi pada skenario serangan yang menggunakan teknik obfuscation dan
fragmentasi paket untuk menghindari deteksi berbasis signature. Hal ini menyoroti
keterbatasan inheren dari deteksi berbasis sighature dan perlunya pembaruan ruleset
secara berkala.

4. F1-Score F1-Score adalah rata-rata harmonik dari presisi dan recall, memberikan skor tunggal
yang menyeimbangkan kedua metrik tersebut.

Formula: F1-Score = 2 * (Presisi * Recall) / (Presisi + Recall) (1)

456

Jurnal Elektronik llmu Komputer Udayana
Volume 14, No 3. February 2026

p-ISSN: 2301-5373
e-ISSN: 2654-5101

e Perhitungan: F1-Score =2 * (0.8125 * 0.8667) / (0.8125 + 0.8667) = 83.87% (2)

o Interpretasi: F1-Score sebesar 83.87% menegaskan bahwa sistem memiliki
keseimbangan yang sangat baik antara kemampuan mendeteksi ancaman secara
komprehensif (recall) dan menjaga kualitas peringatan agar tetap akurat (presisi).

Hasil ini menunjukkan bahwa sistem memiliki kemampuan deteksi (Recall) yang sangat baik,
dengan berhasil mengidentifikasi 13 dari 15 serangan. Namun, adanya 3 kasus False Positive (FP)
sedikit menurunkan tingkat presisi menjadi 81.25%, yang mengindikasikan bahwa beberapa aturan
deteksi perlu disempurnakan untuk meminimalkan alarm palsu. Nilai F71-Score sebesar 83.87%
mengonfirmasi bahwa sistem menjaga keseimbangan yang solid antara deteksi dan presisi.

3.3. Analisis Waktu Respons

Pada bagian ini, dilakukan analisis terhadap waktu respons atau latensi deteksi dari dua komponen

utama sistem: mesin deteksi Suricata dan algoritma pencocokan pola Aho-Corasick. Pengujian ini

bertujuan untuk mengetahui kecepatan masing-masing komponen dalam mengidentifikasi berbagai

jenis serangan yang disimulasikan.Pengujian waktu respons memisahkan latensi pada dua lapisan

utama: deteksi oleh Suricata dan analisis oleh Aho-Corasick, seperti yang ditunjukkan pada Tabel 5.
Tabel 5. Perbandingan Rata-Rata Waktu Respons

Jenis Serangan Waktu Deteksi Suricata Waktu Analisis Aho-Corasick
(detik) (md)
Port Scanning 1.071 0.012
DDoS Attack 1.133 11.825
Protocol-Specific 3.325 14.114
Exploit 0.959 5.602

Diagram Batang Durasi Pencacokan per Periode Diagram Batang Durasi Deteksi Suricata per Periode

W Port Scannin q

0.025 — DDoS Attack
mm Pretocol-Specific 4
N Exploit
0.020
2 53
ol]
z 3
2 0.015 £
g @
g a
g 3
g T2
i 5
g 3
£ 0.010 F
3 3
a
1
0,005
0,000 4 o
1 2 3 a s
FPeriode

Gambar 7. Response Time Ahocorasick

{detik)

k
Deteksi Suricata (detik)

1 2 3 a4
Periode.

Gambar 8. Response Time Suricata

Perbandingan kinerja Suricata dan Aho-Corasick ditunjukkan pada Tabel 5. Suricata memerlukan 1-3
detik untuk deteksi, sedangkan Aho-Corasick hanya membutuhkan milidetik. Hasil ini divisualisasikan
dalam Gambar 7 (rata-rata waktu respons Aho-Corasick) dan Gambar 8 (rata-rata waktu respons
Suricata), yang menegaskan efisiensi arsitektur hibrida Hasilnya menunjukkan perbedaan performa
yang signifikan. Suricata, yang melakukan analisis paket mendalam (Deep Packet Inspection),
membutuhkan 1 hingga 3 detik untuk mendeteksi ancaman. Waktu deteksi terlama tercatat pada
serangan Protocol-Specific, yang memerlukan proses dekode protokol yang kompleks. Di sisi lain,
algoritma Aho-Corasick menunjukkan performa yang jauh lebih unggul, dengan memproses dan
mencocokkan pola di log dalam hitungan milidetik. Hal ini membuktikan bahwa arsitektur hibrida ini

457

efektif, di mana Suricata bertindak sebagai sensor garis depan yang andal, dan Aho-Corasick
menyediakan mesin analisis sekunder yang sangat efisien untuk investigasi pasca-kejadian.

4. Kesimpulan
Penelitian ini berhasil mengimplementasikan dan memvalidasi arsitektur Intrusion Prevention System

(IPS) hibrida yang secara efektif mengombinasikan kekuatan deteksi mendalam dari Suricata dengan
efisiensi analisis log dari algoritma Aho-Corasick. Efektivitas sistem ini terbukti secara kuantitatif melalui
hasil pengujian yang solid. Dengan kemampuan mendeteksi 13 dari 15 skenario serangan, sistem
mencapai tingkat recall (kemampuan deteksi) sebesar 86.67%, yang menunjukkan keandalannya
dalam mengidentifikasi mayoritas ancaman. Keseimbangan performa sistem dikonfirmasi oleh F1-
Score sebesar 83.87%, yang merefleksikan harmoni yang baik antara kemampuan deteksi yang tinggi
dan tingkat presisi (81.25%) yang solid, meskipun masih terdapat ruang untuk mengurangi false
positive. Integrasi algoritma Aho-Corasick sebagai lapisan analisis sekunder terbukti secara signifikan
mempercepat proses validasi dan korelasi peringatan. Sementara Suricata membutuhkan waktu 1
hingga 3 detik untuk melakukan inspeksi paket secara real-time, modul Aho-Corasick mampu
memproses dan mencocokkan pola pada log yang dihasilkan dalam hitungan milidetik. Hal ini
menegaskan bahwa arsitektur ini berhasil menerapkan pembagian kerja yang optimal, di mana Suricata
berfungsi sebagai sensor garis depan yang tangguh, dan Aho-Corasick sebagai mesin analisis pasca-
kejadian yang sangat efisien. Sistem ini juga berhasil menunjukkan kemampuannya dalam memberikan
perlindungan aktif secara end-to-end, mulai dari deteksi ancaman di jaringan hingga eksekusi
pemblokiran alamat IP penyerang secara otomatis melalui Windows Firewall, melengkapi siklus
respons insiden. Untuk pengembangan di masa depan, disarankan untuk mengintegrasikan deteksi
berbasis anomali menggunakan machine learning untuk menangani serangan zero-day dan
mengotomatiskan manajemen ruleset melalui threat intelligence feeds.

Referensi

[1] F. T. Anugrah, S. Ikhwan, and J. Gusti, "Implementasi Intrusion Prevention System (IPS)
Menggunakan Suricata Untuk Serangan SQL Injection," Jurnal Teknik Telekomunikasi, 2022.

[2] D. Stiawan, H. Abdullah, et al., "Intrusion prevention system: A survey," Journal of Theoretical
and Applied Information Technology, vol. 40, no. 1, pp. 1-13, 2012.

[3] Open Information Security Foundation, "Suricata User Guide,” 2023. [Online]. Available:
https://suricata.readthedocs.io/en/latest/. [Accessed: Sep. 19, 2025].

[4] A. V. Aho and M. J. Corasick, "Efficient string matching: An aid to bibliographic search,"
Communications of the ACM, vol. 18, no. 6, pp. 333-340, 1975.

[5] S. Ninawe, V. Bariyekar, and R. Asati, "Network Intrusion Prevention System," IJARCCE, vol.
8, no. 2, pp. 196-199, 2019.

[6] D.Kuswanto, "Unjuk Kerja Intrusion Prevention Sistem (IPS) Berbasis Suricata Pada Jaringan
Lokal Area Network," Jurnal limiah NERO, vol. 1, no. 2, 2014.

[7] T. Ariyadi, Y. N. Kunang, and R. Santi, "Implementasi dan Analisa Snort dan Suricata Sebagai
IDS dan IPS Untuk Mencegah Serangan DOS dan DDOS," in Seminar Nasional Teknologi
Informasi & Komunikasi Terapan (SEMANTIK), Semarang, Indonesia, 2012.

458

